

Revue-IRS

Revue Internationale de la Recherche Scientifique (Revue-IRS)

ISSN: 2958-8413 Vol. 3, No. 4, Août 2025

This is an open access article under the <u>CC BY-NC-ND</u> license.

CONTRIBUTION A L'ETUDE MICROBIOLOGIQUE DES PRODUITS CONGELES VENDUS DANS LA VILLE DE KINSHASA/RD CONGO: CAS DES MARCHES MVONDO, MBANZA-LEMBA ET ROND-POINT NGABA.

Umba di M'balu J.^{1,2,3,4,5}, Ibebeke Bomangwasaila Y.³, Mboma Mburawamba J.¹, Ngoyi Malongi L.^{1,3}, Ibanda Kasongo B.³, Kusika Nzau C.^{3,4,5}, Bwangila Ibula C.^{1,3}, Metshi Fumukasema T.¹, Lukombo Lukeba J.C.*.

- ¹ Université Loyola du Congo (ULC), 7 avenue Père Boka, B.P. 3724/Kinshasa-Gombe
- ² Université Président Kasa-Vubu (UKV), B.P. 314 Boma/Kongo Central, RD Congo
- ³ Université Pédagogique Nationale (UPN), B.P. 8815/Kinshasa-Ngaliema
- ⁴ Institut Supérieur des Techniques Appliquées en Chimie Agroalimentaire de Kimpese (ISTACHA)
- ⁵Centre d'Information et de Vulgarisation Agroalimentaire de Kimpese (CIVAK)
- * A titre posthume

Résumé:

L'objectif de ce travail est la contribution à l'étude microbiologique des produits congelés dont la viande fraîche de bœuf, le poulet frais et les poissons frais vendus dans les marchés Mvondo, Mbanza-Lemba et Rond-point Ngaba dans la ville de Kinshasa sont exemptés des germes microbiens.

Les échantillons ont été prélevés dans trois chambres froides et dans les trois marchés cités ci-haut. A l'aide des milieux d'enrichissement, d'isolement des colonies bactériennes et d'identification des entérobactéries et des levures, il a donc été possible de contribuer à l'identification des micro-organismes isolés ont été étudiés sur des milieux spécifiques par des méthodes appropriées. L'évaluation de la charge microbienne (numération des germes totaux) a été réalisée par la méthode des dilutions décimales et ensemencement en milieu liquide solidifiable sur les 18 échantillons.

Les échantillons examinés sont systématiquement contaminés par divers des microorganismes surtout ceux provenant des différents marchés. Par contre, les bactéries retrouvées sur les échantillons provenant des chambres froides sont celles qui préfèrent le froid et ne se développent pas au-delà de 18°C.

Mots clés: Contribution, Analyse microbiologique, produits congelés, quelques marchés et Kinshasa.

Abstract:

The objective of this work is to contribute to the microbiological study of frozen products, including fresh beef, chicken, and fresh fish sold in the Mvondo, Mbanza-Lemba, and Rond-point Ngaba markets in Kinshasa, which are free of microbial germs.

Samples were collected from three cold rooms and the three markets mentioned above. Using enrichment media, bacterial colony isolation, and Enterobacteriaceae and yeast identification, it was possible to contribute to the identification of the isolated microorganisms, which were studied on specific media using appropriate methods. The microbial load (total germ count) was assessed using the decimal dilution method and inoculation in solidifiable liquid media on the 18 samples.

The samples examined were systematically contaminated by various microorganisms, particularly those from the various markets. However, the bacteria found in samples from cold rooms prefer cold temperatures and do not grow above 18°C.

Keywords: Contribution, Microbiological analysis, Frozen products, Selected markets, and Kinshasa.

Digital Object Identifier (DOI): https://doi.org/10.5281/zenodo.16753582

1 Introduction

Les aliments peuvent être les vecteurs ou de véritables milieux de culture de microorganismes. Ils sont alors potentiellement capables de provoquer diverses affections chez le consommateur dont la gravité dépend d'abord de la nature et du nombre de microorganismes et/ou de la toxicité de leurs produits d'excrétion (CUQ, 2007; Umba *et al.*, 2018; Nsitu *et al.*, 2023).

Malheureusement, dans les pays en voie de développement, les déficits alimentaires sont importants suite aux faibles productions et au bas niveau de rendement des cultures. Et c'est encore dans ces pays que les conditions de production et de commercialisation ne répondent pas bien aux exigences hygiéniques, avec comme conséquence que la plupart des denrées sont susceptibles de diverses contaminations et altérations (Umba *et al.*, 2018). Il y a même lieu de craindre que les pays en développement, du fait de la perméabilité flagrante des frontières d'une part et de l'applicabilité plus ou moins lente des normes de qualité requises d'autre part, écoulent des aliments non conformes à la norme ou refusés ailleurs ou n'ayant pas fait l'objet de contrôles adéquats durant la fabrication et le transport (De Costa *et al.*, 2004 cités par Dahouenon *et al.*, 2008).

La contamination des aliments par les microorganismes se trouve faciliter par les conditions de l'environnement dans lequel ils sont vendus dans divers marchés de Kinshasa. Les mesures d'hygiène ne sont pas respectées et la vente s'effectue dans un environnement insalubre, propice à la prolifération des microbes (Umba *et al.*, 2020). Les risques de contamination constituée par les agents biologiques pathogènes ou opportunistes potentiellement présents sur les viandes et poissons ont un impact négatif sur la santé de l'homme (Mutafwari *et al.*, 2022).

Par ailleurs, les microorganismes sont présents dans l'environnement naturel de l'homme (eau, sol, surfaces diverses), sur l'homme lui-même et sur les êtres vivants, plantes, animaux, d'où ils tirent leur alimentation (Umba, 2002; Zayukua *et al.*, 2019; Umba et Masimango, 2019). D'aucuns n'ignorent que l'environnement kinois est insalubre : exposition des poubelles non loin des étalages de ventes dans les marchés ainsi que des aliments étalés le long des routes et parfois à même le sol.

Ainsi, pour mesurer la dangerosité de cette situation et ses conséquences sur la santé publique, une étude microbiologique sur certains produits alimentaires congelés vendus dans trois marchés de Kinshasa (Mbanza-Lemba, Mvondo et Rond-point Ngaba) a donc été menée. Ces marchés sont implantés dans un espace où la conservation et l'exposition des denrées alimentaires laissent à désirer.

Or, ces denrées connaissent une mauvaise conservation : elles sont exposées à la température ambiante et sont objets de toutes sortes de manipulation inappropriée par les détaillants dès lors le processus de la décongélation s'accentue et donne la possibilité à la flore microbienne de se développer. Ainsi, Miettinen *et al.*, (2000) estimaient qu'à force d'être manipulées et traitées de façon inadéquate, elles présentent de risque sérieux pour les consommateurs (Dahouenon *et al.*, 2008).

Au regard de ce qui précède, la question qui s'y pose est celle de savoir si les viandes fraiches et les poissons frais vendus dans quelques marchés de Kinshasa sont—ils exemptés des germes microbiens?

2 Matériel et Méthodes

2.1 Milieu d'étude

Dans le cadre de ce travail, il y a eu :

- Trois chambres froides : elles ont été prises en tenant compte de la fréquentation et de leurs localisations. Il se dégage que les trois chambres froides sont fréquentées par la population des communes de Lemba, Ngaba, Makala, Mont-Ngafula, Selembao, Kisenso et Matete;
- Trois marchés dont les marchés de Rond-point Ngaba (dans la commune de Ngaba), Mvondo (dans la commune de Makala) et Mbanza Lemba (dans la commune de Lemba).
- Les analyses bactériologiques ont été faites dans le laboratoire de l'Office Congolais de Contrôle qui se trouve dans la commune de la Gombe à Kinshasa.

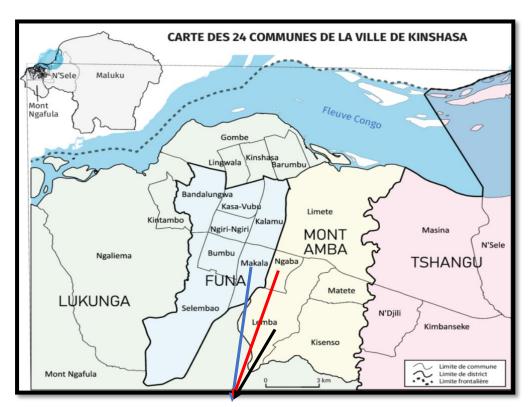


Figure 1 : Localisation adaptée de différents marchés sur la carte administrative de la ville de Kinshasa. Source : Messina et Bonkena (2018) cités par Bonkena (2020).

2.2 Matériel

2.2.1 Matériel biologique:

Les échantillons de viande de bœuf, le poulet et le poisson chinchard. Ils ont été choisis car faisant partie des aliments congelés les plus consommés par la population de Kinshasa.

2.2.2 Matériel de laboratoire :

Il y a les milieux d'enrichissement dont le bouillon nutritif, l'eau péptonée, le sélénite et le diluant qui ont été utilisés dans cette étude. Tandis que le Hoektoen, Rambach, MSA, PCA, Mac Conkey, Gélose au sang, Gélose au chocolat, Sabouraud Chloramphénicol sont les milieux d'isolement des colonies bactériennes utilisés. Les milieux Kligler, Mill ou Ornithine-Mobilité, Citrate, Urée indole, Lysine-fer ont été utilisés pour l'identification des entérobactéries. La bile d'exculine est intervenue pour identifier les staphylocoques et le test de filamentation a été fait sur Sabouraud Chloramphénicol pour identifier les levures.

2.2.3 Caractéristiques de différents milieux utilisés :

- Bouillon Sélénite-cystine : milieu sélectif qui sert à cultiver les entérobactéries comme les Salmonella, le Shigella. Ce milieu inhibe le développement des autres coliformes et entérocoque.
- L'eau peptonée : c'est un milieu d'enrichissement qui sert à cultiver les entérobactéries.
- Le bouillon nutritif : milieu d'enrichissement servant à cultiver des germes aéro-anaérobiques.
- Le diluant : milieu d'enrichissement
- Le PCA: milieu d'isolement standard dans lequel se développent tous les microorganismes.
- Rambach: c'est un milieu différent de XLD, DLC, Hektoën, SS, Mac Conkey, vert brillant, etc., par sa spécificité de préciser avec exactitude les colonies de Salmonella et aussi très rapide entre 18 à 24 heures pour le développement des colonies à 37°C.
- Hektoën : milieu d'isolement sélectif et de différenciation destiné à la recherche de Salmonella et Shigella
- Mac Conkey gélose : milieu d'isolement des entérobactéries
- Mannitol Salt Agar : milieu d'isolement pour les staphylocoques
- Urée-indol : milieu d'identification pour les entérobactéries
- Kligler : milieu d'identification pour les entérobactéries. Il s'observe la fermentation ou non de glucose, lactose et la production ou non de gaz et de l'acide sulfurique (H₂S).
- Lysine-fer : milieu d'identification des entérobactéries. Ce milieu est utilisé pour observer la couleur de la pente, du colt et la production de l'acide sulfurique.
- Citrate de Koser-Simmons : c'est un milieu d'identification des entérobactéries dans le but de mieux observer sa positivité ou sa négativité. Si le milieu est positif, la couleur du contenu vire du vert au bleu.

2.3 Méthodes

2.3.1 Méthode de prélèvement et échantillonnage

Il y a eu des prélèvements des échantillons dans les trois chambres froides et dans les trois marchés tel que repris dans le tableau 1. Le poids de chaque échantillon prélevé dans un site donné dépendait du fournisseur. Il faut noter que pour les chambres froides, les gestionnaires ont exigés l'achat d'1 kg de chacune de denrées (viande de bœuf et poisson chinchard) et un poulet entier.

Tableau 1. Prélèvement des échantillons

Milieu de prélèvement	Période de prélèvement	Nombre d'échantillons	Types de produit congelés
Chambre froide Espoir	20 mars 2025	1	Viande de bœuf

Chambre froide Espoir	20 mars 2025	1	Poisson chinchard
Chambre froide Espoir	20 mars 2023	1	Poulet
Chambre froide Mayalos	22 mars 2025	1	Viande de bœuf
·		_	
Chambre froide Mayalos	22 mars 2025	1	Poisson chinchard
Chambre froide Mayalos	22 mars 2025	1	Poulet
Chambre froide Groupe	25 mars 2025	1	Viande de bœuf
Kaka			
Chambre froide Groupe	25 mars 2025	1	Poulet
Kaka			
Chambre froide Groupe	25 mars 2025	1	Poisson chinchard
Kaka			
Marché Rond-point	28 mars 2025	2	Viande de bœuf
Ngaba			
Marché Rond-point	28 mars 2025	2	Poisson chinchard
Ngaba			
Marché Rond-point	28 mars 2025	2	Poulet
Ngaba			
Marché Mvondo	01 avril 2025	2	Viande de bœuf
Marché Mvondo	01 avril 2025	2	Poisson chinchard
Marché Mvondo	01 avril 2025	2	Poulet
Marché Mbanza Lemba	04 avril 2025	2	Viande de bœuf
Marché Mbanza Lemba	04 avril 2025	2	Poulet
Marché Mbanza Lemba	04 avril 2025	2	Poisson chinchard

Source: Descente sur terrain

Pour les détaillants, soit vendeurs de différents marchés, il n'y a eu aucune exigence d'achat d'une quantité de denrées. Les achats se sont faits auprès des vendeurs choisis au-hasard.

2.3.2 Mode opératoire :

- Matériels utilisés : sachet, ouate, alcool, flacons stériles, gants stériles et thermos.
- Procédé: remise des gants aux vendeurs, imbibé l'alcool sur le sachet et la machette, découpe d'un kilogramme de viande de bœuf pour les tenanciers de chambres froides et d'un morceau pour les vendeurs des marchés. Les morceaux obtenus après découpe étaient dans une bouteille de 500 gr de mayonnaise.

2.3.3 Déroulement des opérations au laboratoire :

Après transport des différents échantillons au laboratoire de l'Office Congolais de Contrôle, le prélèvement des échantillons pour chaque produit congelé se faisait de la manière suivante :

- Pour la viande de bœuf : prélever un morceau de l'échantillon en profondeur en enlevant la partie superficielle ;
- Pour le poulet entier, il fallait enlever la peau et prélever 25 gr des muscles pectoraux ;
- Pour le poisson chinchard : enlevé la peau et prendre un morceau de chairs dorsales.

2.3.4 Méthode d'analyse :

- Opération d'enrichissement : les milieux utilisés sont le bouillon nutritif, le Selenite-cystine, le PCA et le diluant.
 - Incubation et observation : incubation faite pendant 24h à 37°C, tous les échantillons enrichis dans le bouillon sélénite-cystine et bouillon nutritif sont positifs marqué pour le 1er au virage de jaune en rouge

- et pour le 2^{ème} de jaune clair au jaune trouble. Le PCA est aussi positif marqué par le développement de colonies dans le milieu gélosé.
- Opération d'isolement: repiquage de la solution enrichie (inoculum) venant de bouillon Sélénite-Cystine dans les milieux Rambach Agar et Hektoen incubés à 37°C pendant 24 heures.
 Observation: 24 heures après incubation, il y a présence des colonies. Par la couleur, il s'agit des coliformes. Ce qui a permis à faire l'identification sur la galerie Leminore ensuite sur 'API 20 E
- Opération d'identification : la galerie Leminore comprend cinq milieux dont Urée-indole, Kligler, Lysine-Fer, Ornithine et Citrate dans lesquels les colonies venant des milieux d'isolement différents ont été mis en contact. Ces milieux ont permis de lire les caractères biochimiques de microorganismes. A côté de la galerie de Leminore, une autre méthode a été utilisée d'identification dite API 20 E. Elle identifie avec précision le genre et l'espèce en cause. Cette méthode est réalisée pour l'ensemble de groupe entérobactéries en utilisant 25 réactifs.

3 Résultats

3.1. Normes de la charge bactérienne tolérable dans les produits congelés

Le tableau 2 reprend la charge bactérienne tolérable dans les produits congelés (Bourgeois, 1991).

Tableau 2. Charge bactérienne tolérable dans les produits congelés

Denrées	Germes en cause	Charge microbienne	
Viande de bœuf fraîche congelée	Genre aérobie mésophiles	$5.10^{2}/g$	
_	Anaérobies sulfo réducteurs	2/g	
	Salmonella	Absence dans 25g	
Viande de bœuf non réfrigérée ou	Flore aérobie mésophile	$5.10^{4}/g$	
congelée séparée en petite pièce	Coliformes fécaux	$10^{2}/g$	
conditionnée sous vide ou non	Anaérobie sulfo-réducteur	2/g	
	Salmonella	Absence dans 25g	
Viande volaille entière	Salmonella	Absence dans 25g des muscles	
		pectoraux	
Viande volaille séparée	Flore aérobie mésophile	$10^{6}/g$	
mécaniquement	Coliformes fécaux	$5.10^{3}/g$	
	Staphiloccocus aureus	$10^{3}/g$	
	Anaérobie sulfo-réducteur	$10^{2}/g$	
	Salmonella	Absence dans 1g	
Poissons	Salmonella	Absence dans 25g de muscle du	
		dos.	

Source: Bourgeois (1991)

Après prélèvement et analyse de ces différentes denrées, les résultats obtenus sont repris dans les tableaux suivants.

3.2. Caractères représentatifs des milieux après ensemencement

3.2.1 Milieu d'enrichissement

Pour ces analyses, le milieu Bouillon Sélénite-cystine a été utilisé comme inoculum et le bouillon nutritif pour le contrôle de stérilité de différentes denrées. Au cas où le Sélénite est négatif, cela renvoie directement à aller faire le comptage des colonies poussées dans les milieux de dénombrement (PCA) pour faire le calcul d'unité format colonie par gramme d'échantillons (UFC).

Tableau 3. Milieux, caractères, échantillons et présomption

Milieux	Code échantillons	Nature d'échantillon	Site d'achat	Caractère après ensemencement	Présomption
Sélénite	EM1	Viande	Chambre froide Espoir	Virage au rouge	- Proteus - Shigella - Salmonella - Citrobacter
Bouillon nutritif	EM1	Viande	Chambre froide Espoir	Trouble	- Proteus - Shigella - Salmonella - Citrobacter
Sélénite	EM2	Poulet	Chambre froide Espoir	Virage au rouge	- Proteus - Shigella - Salmonella - Citrobacter
Bouillon nutritif	EM2	Poulet	Chambre froide Espoir	Trouble	- Proteus - Shigella - Salmonella - Citrobacter
Sélénite	EM3	Viande	Chambre froide Mayalos	Virage au rouge	- Proteus - Shigella - Salmonella - Citrobacter
Bouillon nutritif	EM3	Viande	Chambre froide Mayalos	Trouble	- Proteus - Shigella - Salmonella - Citrobacter
Sélénite	EM4	Viande	Chambre froide groupe Kaka	Virage au rouge	- Proteus - Shigella - Salmonella - Citrobacter
Bouillon nutritif	EM4	Viande	Chambre froide groupe Kaka	Trouble	ProteusShigella

					- Salmonella - Citrobacter
Sélénite	EM5	Poulet	Chambre froide groupe Kaka	Virage au rouge	ProteusShigellaSalmonellaCitrobacter
Bouillon nutritif	EM5	Poulet	Chambre froide groupe Kaka	Trouble	ProteusShigellaSalmonellaCitrobacter
Sélénite	EM6	Poisson chinchard	Chambre froide groupe Kaka	Virage au rouge	- Proteus - Shigella - Salmonella - Citrobacter
Bouillon nutritif	EM6	Poisson chinchard	Chambre froide groupe Kaka	Trouble	ProteusShigellaSalmonellaCitrobacter
Sélénite	EM7	Poisson chinchard	Chambre froide Espoir	Virage au rouge	ProteusShigellaSalmonellaCitrobacter
Bouillon nutritif	EM7	Poisson chinchard	Chambre froide Espoir	Trouble	ProteusShigellaSalmonellaCitrobacter
Sélénite	EM8	Viande	Marché Rond-point Ngaba	Virage au rouge	- Proteus - Shigella - Salmonella - Citrobacter
Bouillon nutritif	EM8	Viande	Marché Rond-point Ngaba	Trouble	- Proteus - Shigella

					- Salmonella - Citrobacter - Proteus
Sélénite	EM9	Poisson chinchard	Marché Rond-point Ngaba	Virage au rouge	- Shigella - Salmonella - Citrobacter
Bouillon nutritif	ЕМ9	Poisson chinchard	Marché Rond-point Ngaba	Trouble	- Proteus - Shigella - Salmonella - Citrobacter
Sélénite	EM10	Poulet	Marché Rond-point Ngaba	Virage au rouge	- Proteus - Shigella - Salmonella - Citrobacter
Bouillon nutritif	EM10	Poulet	Marché Rond-point Ngaba	Trouble	- Proteus - Shigella - Salmonella - Citrobacter
Sélénite	EM11	Poulet	Chambre froide Mayalos	Virage au rouge	- Proteus - Shigella - Salmonella - Citrobacter
Bouillon nutritif	EM11	poulet	Chambre froide Mayalos	Trouble	- Proteus - Shigella - Salmonella - Citrobacter
Sélénite	EM12	Poulet	Marché Mvondo	Virage au rouge	- Proteus - Shigella - Salmonella - Citrobacter
Bouillon nutritif	EM12	Poulet	Marché Mvondo	Trouble	- Proteus - Shigella

					- Salmonella - Citrobacter
Sélénite	EM13	Viande	Marché Mvondo	Virage au rouge	- Proteus - Shigella - Salmonella - Citrobacter
Bouillon nutritif	EM13	Viande	Marché Mvondo	Trouble	ProteusShigellaSalmonellaCitrobacter
Sélénite	EM14	Poisson chinchard	Marché Mvondo	Virage au rouge	- Proteus - Shigella - Salmonella - Citrobacter
Bouillon nutritif	EM14	Poisson chinchard	Marché Mvondo	Trouble	ProteusShigellaSalmonellaCitrobacter
Sélénite	EM15	Poisson chinchard	Chambre froide Mayalos	Virage au rouge	- Proteus - Shigella - Salmonella - Citrobacter
Bouillon nutritif	EM15	Poisson chinchard	Chambre froide Mayalos	Trouble	- Proteus - Shigella - Salmonella - Citrobacter
Sélénite	EM16	Poulet	Marché Mbanza Lemba	Virage au rouge	- Proteus - Shigella - Salmonella - Citrobacter
Bouillon nutritif	EM16	Poulet	Marché Mbanza Lemba	Trouble	- Proteus - Shigella

					- Salmonella - Citrobacter
Sélénite	EM17	Viande	Marché Mbanza Lemba	Virage au rouge	- Proteus - Shigella - Salmonella - Citrobacter
Bouillon nutritif	EM17	Viande	Marché Mbanza Lemba	Trouble	- Proteus - Shigella - Salmonella - Citrobacter
Sélénite	EM18	Poisson chinchard	Marché Mbanza Lemba	Virage au rouge	- Proteus - Shigella - Salmonella - Citrobacter
Bouillon nutritif	EM18	Poisson chinchard	Marché Mbanza Lemba	Trouble	- Proteus - Shigella - Salmonella - Citrobacter

3.2.2 Milieu de dénombrement

Le milieu de dénombrement a permis la quantification de colonies qui ont conduit à calculer et à connaître le nombre exact des colonies se trouvant dans 1g de chacun de nos échantillons. Ce calcul a été rendu possible par la formule suivante :

$$\frac{N \times 100}{p. e}$$

Où N = nombre de colonies dans 1mm de solution stomachée (diluant + échantillon);

100 = facteur de dilution en millilitre (100ml);

p.e = prise d'essai (poids de m'échantillon stomaché).

Tableau 4. Milieu, échantillon, nombre de colonies et prise d'essai

Milieu	Echantillon	Prise d'essai (g)	Nombre colonie par	Nombre colonie	Observation
			millilitre (UFC/ml)	millilitre (UFC/ml) dans 100ml	
PCA	EM1	12,008	2000	1,6655.10 ⁴	Suspicion
PCA	EM2	12,289	3.0000	1,6404.104	Suspicion
PCA	EM3	20,129	2500	1,2419.10 ⁴	Suspicion
PCA	EM4	17,783	2000	1,1246.10 ⁴	Suspicion
PCA	EM5	16,999	1200	$7,059.10^3$	Suspicion
PCA	EM6	14,140	800	5,657.10 ³	Suspicion
PCA	EM7	13,170	400	3,037.10 ³	Suspicion
PCA	EM8	17,119	400.000	2,33658.10 ⁶	Suspicion
PCA	EM9	14,345	1.200.000	8,365284.10 ⁶	Suspicion
PCA	EM10	18,424	800.000	4,342162.10 ⁶	Suspicion
PCA	EM11	14,059	120.000	8,53545.10 ⁵	Suspicion
PCA	EM12	18,152	50.000	2,7541.10 ⁵	Suspicion
PCA	EM13	17,250	200.000	1,159420.10 ⁶	Suspicion
PCA	EM14	15,180	300.000	1,976284.10 ⁶	Suspicion
PCA	EM15	16,239	160.000	9,85282.10 ⁵	Suspicion
PCA	EM16	18,500	1.800.000	9,729729.10 ⁶	Suspicion
PCA	EM17	16,300	2.500.000	1,53374223.10 ⁷	Suspicion
PCA	EM18	18,000	800.000	4,444444.10 ⁶	Suspicion

3.2.3 Milieux d'isolement

Tableau 5. Caractères macroscopiques de colonies dans les milieux d'isolement

Milieux	Forme	Couleur	Diamètre	Bord	Echantillon
Rambach	Circulaire	Verdâtre tant au bleu	Varie	Lisse	M1
Hektoen	Circulaire	Jaune saumon à centre noir	0,5 – 1 mm	Lisse	M1
Rambach	Circulaire	Incolore	0.5 - 1 mm	Lisse	M2
Hektoen	Circulaire	Bleuâtre	Varie	Lisse	M2
Rambach	Circulaire	Bleuâtre tant à rouge	0.5 - 1 mm	Lisse	M3
Hektoen	Circulaire	Verdâtre avec centre noir	1 mm	Lisse	M3
Rambach	Circulaire	Bleuâtre et incolore	1 mm	Lisse	M4
Hektoen	Circulaire	Verdâtre avec centre noir	1 mm	Lisse	M4
Rambach	Circulaire	Incolore	1 mm	Lisse	M5
Hektoen	Circulaire	Jaune saumon à centre noir	1 mm	Lisse	M5
Rambach	Circulaire	Bleuâtre et incolore	1 mm	Lisse	M6
Hektoen	Circulaire	Jaune saumon à centre noir	1 mm	Lisse	M6
Rambach	Circulaire	Incolore	1 mm	Lisse	M7
Hektoen	Circulaire	Bleuâtre	1 mm	Lisse	M7
Rambach	Circulaire	Rouge fuchsia	1 mm	Lisse	M8
Hektoen	Circulaire	Jaune saumon à centre noir	1 mm	Lisse	M8
Rambach	Circulaire	Rouge fuchsia	1 mm	Lisse	M9
Hektoen	Circulaire	Jaune saumon à centre noir	1 mm	Lisse	M9
Rambach	Circulaire	Rouge fuchsia	1 mm	Lisse	M10
Hektoen	Circulaire	Jaune saumon à centre noir	1 mm	Lisse	M10
Rambach	Circulaire	Incolore	1 mm	Lisse	M11
Hektoen	Circulaire	Bleuâtre	Varie	Lisse	M11
Rambach	Circulaire	Rouge fuchsia	1 mm	Lisse	M12
Hektoen	Circulaire	Bleuâtre	1 mm	Lisse	M12
Rambach	Circulaire	Rouge fuchsia	1 mm	Lisse	M13
Hektoen	Circulaire	Jaune saumon à centre noir	1 mm	Lisse	M13
Rambach	Circulaire	Rouge fuchsia	1 mm	Lisse	M14
Hektoen	Circulaire	Verdâtre avec centre noir	1 mm	Lisse	M14
Rambach	Circulaire	Incolore	1 mm	Lisse	M15
Hektoen	Circulaire	Jaune saumon à centre noir	1 mm	Lisse	M15
Rambach	Circulaire	Rouge fuchsia	1 mm	Lisse	M16

Hektoen	Circulaire	Bleuâtre	1 mm	Lisse	M16
Rambach	Circulaire	Bleuâtre	1 mm	Lisse	M17
Hektoen	Circulaire	Jaune saumon à centre noir	1 mm	Lisse	M17
Rambach	Circulaire	Rouge fuchsia	1 mm	Lisse	M18
Hektoen	Circulaire	Bleuâtre	1 mm	Lisse	M18

3.2.4 Identification des germes en cause

- Identification sur la galerie de Leminore

Dans le milieu d'isolement, les genres et les espèces de certains germes bactériens sont lus par rapport à la couleur des colonies qui ont poussé sur les milieux Rambach et Hektoen. Tandis que les milieux d'identification renseignent sur les genres et les espèces en cause suivant les caractères biochimiques qu'ils présentent.

Tableau 6. Présentation des résultats obtenus

	Milieu de Kligler Milieu de Lysine-Fer						Milieu de Milieu d'Ornith-Mob. Mil			Milieu d'Ur	Milieu d'Urée-Indole	
Ech.	Glu.	Lact.	H ₂ S	Gaz	Glu.	Lact.	H ₂ S	Citrate	Décarb.	QDC	Uréase	Indole
M1H	+	-	+	-	+	-	-	-	+	+	+	-
M2H	+	-	-	+	-	-	-	-	+	+	+	+
МЗН	+	-	+	+	+	-	-	-	+	+	+	+
M4H	+	-	-	-	-	-	-	-	-	-	-	+
M5H	+	-	+	-	+	-	-	+(-)	+	+		+
М6Н	+	+	-	-	+		-	+	+	+	-	-
M7H	+	+	+	+	+	-	-	+	+	+	-	-
M8R	+	-	-	+	+	-	-	-	-	-	_	-
M9R	+	-	+	+	-	-	+		-	-	-	-
M10R	+	-	-	-	-	-	-	-	-	-	_	-
M11H	+	+	-	-	+	-	-	+	-	-	-	-
M12R	+	-	-	-	-	-	-	+	-	-	-	-
M13R	+	-	+	+	-	-	+	+	-	-	_	-
M14R	+	-	+	-	-	-	-	-	-	-	-	-
M15H	+	+	+	+	+	-	-	+	+	+	-	-
M16R	+	-	-	-	-	-	-	-	-	-	-	-
M17H	+	-	-	-	+	-	-	-	+	+	-	-
M18R	+	-	+	+	-	-	+	+	-	-	-	-

- Identification sur la galerie API 20 E

Après 24 heures d'incubation à 37°C, les kits d'incubateur sont sortis et déposés sur la paillasse de l'ensemenceur où les réactifs de révélation à TDA, IND et VIP sont ajoutés. Après dix minutes, la galerie API 20 E donne les résultats repris dans le tableau 7

Tableau 7 : Présentation des résultats obtenus sur l'API 20 E

1 "	ON	AD	LD	OD	CI	H ₂	UR	TD	IN	VI	GE	GL	MA	IN	SO	RH	SA	ME	AM	AR	О	Genre	Espèce
	PG	Н	С	С	T	S	Е	A	D	P	L	U	N	О	R	A	C	L	Y	A	X		1
	1	2	4	1	2	4	1	2	4	1	2	4	1	2	4	1	2	4	1	2	4		
M1	-	-	-	+	-	+	+	+	-	-	-	+	-	-	-	-	-	-	-	-	-	Proteus	mirabilis
M2	+	-	+	+	+	-	-	-	-	+	-	+	+	-	+	+	+	+	-	+	-	Escherich ia	colii
M3	-	-	-	-	-	+	+	+	+	+	-	+	+	-	-	-	-	-	-	-	-	Proteus	Morganii
M4	+	-	-	+	-	-	+	+	+	-	-	+	+	+	-	-	-	-	-	-	-	Hafnia	Albei
M5	-	-	-	-	-	+	+	+	+	-	-	+	+	+	+	+	-	+	-	+	-	Proteus	vulgaris
M6	+	-	-	-	-	+	-	+	+	-	-	-	+	+	+	-	-	-	-	-	-	Providenc ia	rettgeri
M7																						Providenc ia	rettgeri
M8	-	-	+	+	-	-	-	+	-	-	-	+	+	-	-	+	-	-	-	+	-	Salmonell a	paratyph i
M9	-	-	+	+	+	+	-	+	-	-	-	+	+	-	-	+	-	-	-	+	-	Salmonell a	-
M10	-	-	+	+	+	-	-	-	-	-	-	+	+	-	-	+	-	-	-	+	-	Salmonell a	pullorum
M11	+	-	+	+	+	-	-	-	-	+	-	+	+	-	+	+	+	+	-	+	-	Escherich ia	colii
M12	-	-	+	+	-	-	-	-	-	-	-	+	+	-	-	+	-	-	-	+	-	Salmonell a	gallinaru m
M13	-	-	+	+	+	+	-	+	-	-	-	+	+	-	-	+	-	-	-	+	-	Salmonell a	-
M14	-	-	+	+	-	+	-	-	-	-	-	+	+	-	-	+	-	-	-	+	-	Salmonell a	typhi
M15	+	-	-	+	-	-	-	-	-	-	-	+	+	-	-	+	-	-	-	-	-	Proteus	Vulgaris

M16	-	-	+	+	+	+	-	+	-	-	-	+	+	-	-	+	-	-	-	+	-	Salmonell	-
																						а	
M17	+	-	-	+	-	-	-	-	-	-	-	+	+	-	+	+	-	+	-	+	-	Shigella	sonnei
M18	-	-	+	+	+	+	-	+	-	-	-	+	+		-	+	-	-	-	+	-	Salmonell	-
																						a	1

4 Discussion

Le tableau 3 montre les différents échantillons avec leur nombre d'unités format colonie correspondant. Ce nombre varie selon les échantillons et selon les sites de prélèvement (marchés et chambres froides). Il apparaît que les échantillons provenant des marchés ont un taux de contamination élevé qui se caractérise par l'exposant élevé en termes de l'UFC par rapport aux échantillons pris dans les chambres froides.

Cette différence s'explique par le fait qu'au niveau des marchés, l'activité anthropique est intense et apporte de multiples facteurs susceptibles de contaminer les denrées alimentaires en général, la viande et le poisson en particulier. Parmi ces facteurs, il y a le manque d'hygiène en général qui accroît les possibilités de contamination ; l'emplacement des marchés est aussi l'une des causes majeures qui accélère cette contamination de la viande et du poisson.

Au marché de Mbanza Lemba, les détaillants vendent les denrées alimentaires à même le sol, sur des cartons ou les tablettes visiblement sales ; et ces denrées ne sont pas couvertes. Au passage des véhicules, des piétons et d'autres usagers de la route, il y a la poussière qui se soulève et qui pollue ainsi l'atmosphère environnante. Cette poussière, une fois mélangée aux germes pathogènes de l'air, vient atterrir sur les denrées alimentaires en général, et sur la viande, le poisson en particulier. Par ailleurs, l'action de marchander, par-dessus les denrées alimentaires non couvertes, donne lieu à de multiples possibilités de contamination.

Cependant, le marché du Rond-point Ngaba se trouve tout au long de la route principale By-Pass allant dans la province du Kongo Centrale. De par son emplacement, ce marché constitue un site idéal pour que les denrées alimentaires soient contaminées. Il y a tout d'abord la pollution provenant de la poussière soulevée par le passage ininterrompu des véhicules, des passants, des poubelles déposées aux alentours d'où proviennent des mouches qui se déversent sur ces denrées. Ensuite, il y a la présence des eaux stagnantes et de la boue qui constituent aussi des sites de reproduction des microbes divers. Les chambres froides offrent une situation bien autre à cause de leur emplacement. Elles offrent la possibilité d'une sécurité alimentaire partielle. Les bactéries retrouvées sur les échantillons provenant des chambres froides sont celles qui préfèrent le froid et ne se développent pas au-delà de 18°C.

5. Conclusion

Cette étude consistait à déterminer le degré de contamination de viande, de poisson chinchard et de poulet à partir des chambres froides jusqu'à leurs exportations vers les marchés de Rond-point Ngaba, Mvondo et Mbamza Lemba.

Les résultats ainsi obtenus confirment l'hypothèse selon laquelle les produits congelés vendus dans ces sites d'expérience sont bel et bien très contaminés. La différence se situe par rapport à la taille de la contamination qui est plus élevée au niveau des marchés que dans les chambres froides.

REFERENCES

- [1] Belani M.J., Mpanzu B.P., Ngonde N.H. et Kinkela S.C. (2023) Etat des lieux de l'utilisation des énergies de cuisson dans les ménages de Kinshasa : analyse de la substitution du bois-énergie. *In Bois et Forêts des Tropiques, volume 355, p. 35-46.*
- [2] CUQ J.L. (2007) Microbiologie alimentaire, département des sciences et technologies des industries alimentaires. Université de Montpellier 2, 134 p.
- [3] Dahouenon A.E., Yehouenou B., Hounzangbe A.M.S., Soumanou M.M. et Sohounhloue D.C.K. (2008) Etat de salubrité des viandes de volaille congelées importées dans la ville de Cotonou en République du Bénin. *In Annales des Sciences Agronomiques du Bénin 10 (2) : 123-134*.

- [4] Mutafwari L.Z., Biey M., Kayembe S. et Gizanga V. (2022) Evaluation de la qualité microbiologique des produits agroalimentaires vendus sur les marchés de Kinshasa: cas de viande fraiche et poissons frais vendus au marché de liberté et Rond-point Ngaba (République Démocratique du Congo). *In International Journal of Innovation and Applied Studies vol. 37 n°3, pp. 549-560.*
- [5] Nsitu M.G., Umba D.M.J., Kusika N.C., Bamuene S.D. et Ndoki N.J.C. (2023) Etude microbiologique des charcuteries vendues aux péages de Kasangulu et Lukala au Kongo-central/RD Congo. *In Journal of Animal & Plant Sciences vol.* 57(2): 10501-10513.
- [6] Umba D.M.J. (2002) Contribution à l'étude microbiologique des aliments consommés en l'état à Kinshasa, cas du pain. Mémoire de DES, Faculté des Sciences Agronomiques, Université de Kinshasa, inédit 78 P.
- [7] Umba D.M.J. et Masimango N.T. (2019) *Analyse de la qualité microbiologique du pain commercialisé à Kinshasa*. Editions universitaires européennes, Group 17 Meldrum Street, Beau Bassin 71504, Mauritius, 80 p.
- [8] Umba D.M.J., Kumpel M.P., Maleke M.J.P. et Metena M.M. (2020) Evaluation environnementale et sanitaire des aires d'abattage à l'heure de Covid-19 situées dans la commune de Matete ville-province de Kinshasa (RD Congo). *In Journal of Animal & Plant Sciences, vol. 46 (2) : 8256-8270.*
- [9] Umba D.M.J., Masimango N.T., Kashala K.J.C., Kusika N.C. et Musay N.P. (2018) Analyse de la qualité microbiologique du pain commercialisé et consommé en l'état à Kinshasa (RD Congo). In Journal of Animal & Plant Sciences vol. 38(2): 6244-6256
- [10] Zayukua E.B., Umba D.M.J., Kusika N/C., Masimango N.T., Lufimpadio N.J.G. (2019) Contribution à l'analyse microbiologique des poulets, des chinchards (*Trachurus trachurus*) et des poissons salés vendus à Kinshasa en vue de la sensibilisation à la méthode ISO 22000 : 2005 HACCP. *In Journal of Animal & Plant Sciences, vol. 42 (2) : 7256-7268.*