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Abstract: In the era of Big Data, the diversity and volume of data in enterprise data warehouses pose significant 
challenges for accurate and robust classification. Data mining encompassing classification, clustering, and 

association-rule techniques serves as a cornerstone for uncovering actionable insights from these vast 

repositories. Traditional analytic paradigms, however, often falter when confronted with real-world 

imperfections, such as multi-valued attributes, measurement imprecision, and aggregated summaries. Symbolic 

Data Analysis (SDA) addresses these shortcomings by representing entities as complex “symbolic objects” 

(e.g., intervals, distributions, or sets), thereby preserving inherent variability and uncertainty. A data warehouse 

based on medical parameters (BMI, blood glucose, etc.) was constructed and analyzed using both approaches. 

In this work, we first develop a star-schema data warehouse tailored to a representative application domain and 

implement a robust ETL pipeline to ensure data consistency and integrity. We then apply both classical 

classification algorithms (e.g., k-means, decision trees, and support vector machines) and a novel symbolic 

dynamic classification framework where class prototypes are defined as hyperrectangular envelopes of feature 
intervals to the same datasets. Our evaluation demonstrates that symbolic approaches excel in handling data 

imprecision and provide richer interpretability, while classical methods remain computationally efficient. The 

results are validated using accuracy, inertia-based metrics, and clinical interpretability, offering actionable 

insights for data warehousing applications. 
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1 Introduction 

In the era of Big Data, organizations increasingly rely on data warehousing systems to store, manage, and analyze 

massive volumes of heterogeneous and complex data. Data mining has emerged as a critical technology for 

extracting actionable knowledge from such large-scale data repositories. According to Han et al. (2011), data 
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mining encompasses a broad set of techniques such as classification, clustering, and association rule mining, 

enabling analysts to uncover previously unknown patterns and trends from structured datasets. 

Traditional or classical classification methods, such as decision trees (Quinlan, 1993), k-nearest neighbors (Cover 

& Hart, 1967), and support vector machines (Cortes & Vapnik, 1995), have been widely applied in data mining 

tasks due to their simplicity, interpretability, and effectiveness on well-defined data. These methods assume that 

each instance in the dataset is represented by a single-valued feature vector, often requiring a high degree of data 

cleaning and transformation. 

However, real-world data are often imperfect, imprecise, and multi-valued, especially in domains involving 
aggregated, temporal, or symbolic information. In response to these challenges, symbolic data analysis (SDA) was 

introduced as an extension of classical data analysis, capable of handling more complex data types such as 

intervals, distributions, and categories (Bock & Diday, 2000). Symbolic objects, a core concept in SDA, allow the 

representation of grouped or summarized entities, facilitating the analysis of aggregated information without loss 

of essential variability. 

The use of SDA in data warehousing systems is particularly relevant for high-level, descriptive knowledge 

discovery, where one must account for the imprecision and diversity inherent in the summarized data stored within 

OLAP cubes or multidimensional schemas (Billard & Diday, 2003). Symbolic classifiers such as symbolic k-

means or symbolic hierarchical clustering operate on such enriched data types, revealing trends and patterns that 

may be invisible under classical frameworks. 

Recent research has highlighted the advantages of symbolic approaches in domains like customer segmentation, 
bioinformatics, and temporal data mining (Lechevallier et al., 2001; Brito & Moniz, 2018). Despite their promise, 

symbolic methods are less mainstream than their classical counterparts, partly due to the complexity of symbolic 

data representation and a lack of integrated tools within standard data warehousing pipelines. 

This paper provides a comparative study of classification methods in the context of data warehousing systems, 

contrasting classical classification models with symbolic approaches. We begin by designing a data warehouse 

and conducting data mining tasks using conventional classification algorithms. We then apply symbolic dynamic 

classification techniques to the same datasets. Our objective is to evaluate the performance, expressiveness, and 

suitability of both paradigms for knowledge discovery in complex, real-world data environments. 
 

While symbolic methods have been explored in niche domains, their integration into mainstream data warehousing 
systems remains limited. This study bridges this gap by proposing a scalable symbolic dynamic classification 

framework tailored for OLAP environments, addressing both theoretical and practical challenges. 

2  Literature Review 

2.1 Classical Classification Methods in Data Mining 
 

Classical classification methods have long been central to data mining tasks, especially in structured and well-

defined environments such as relational databases and traditional data warehouses. These approaches include well-

known algorithms such as Decision Trees (Quinlan, 1993), Naïve Bayes, Support Vector Machines (Cortes & 

Vapnik, 1995), and k-Nearest Neighbors (Cover & Hart, 1967). Their main strength lies in their interpretability, 

computational efficiency, and availability in most data mining toolkits. 

Decision Trees, for instance, have been widely adopted for their ease of use and ability to produce understandable 

models (Han et al., 2011). However, they often struggle with noisy data or missing values. Support Vector 

Machines are effective in high-dimensional spaces but require significant tuning of hyperparameters and do not 

natively handle categorical or symbolic data. The k-Nearest Neighbors algorithm is straightforward but suffers 

from the curse of dimensionality and sensitivity to irrelevant features. 

Classical classification assumes that data instances are described by fixed-size feature vectors containing single 

numerical or categorical values. This assumption fails to capture the complexity of real-world data, which may 

involve multi-valued, interval-based, or uncertain information (Diday & Noirhomme-Fraiture, 2008). As a result, 

such approaches are limited when applied to summarized or aggregated data, as commonly found in OLAP 

systems. 

2.2 Symbolic Data Analysis (SDA) and Symbolic Classification 

Symbolic Data Analysis (SDA) emerged in the 1980s as an extension of classical data analysis to handle more 

complex and structured data types. Introduced by Diday and his collaborators, SDA aims to analyze data described 
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not just by single values but by more complex objects such as intervals, distributions, sets, and even logical 

formulas (Bock & Diday, 2000). 

In the symbolic paradigm, data units called symbolic objects are used to represent aggregated or grouped 

information. This is particularly suited to data warehousing contexts, where data is often pre-aggregated across 

dimensions like time, region, or customer segment (Billard & Diday, 2003). For example, rather than a single age 

value, a customer group might be described by an age interval or by a modal distribution over age categories. 

Symbolic classification methods adapt traditional algorithms to work with symbolic objects. Lechevallier et al. 

(2001) proposed symbolic versions of hierarchical and partitional clustering methods that operate directly on 

complex data types. Similarly, Brito and Moniz (2018) reviewed clustering methods for symbolic data, showing 

how symbolic representations enable richer and more realistic modeling, particularly in uncertain or imprecise 

environments. 

The main advantages of symbolic methods include: 

• Better handling of heterogeneity and imprecision in data, 

• Natural support for aggregated and multivalued information, 

• Improved interpretability in decision-support contexts. 

However, symbolic methods come with challenges, such as increased algorithmic complexity, fewer available 

tools, and limited standardization compared to classical data mining. 

2.3 Applications in Data Warehousing Systems 

Data warehousing systems collect large volumes of transactional data and transform them into multidimensional 

representations via ETL (Extract, Transform, Load) processes. These multidimensional cubes facilitate OLAP 

(Online Analytical Processing) but result in data that are often symbolic in nature e.g., summarized by ranges, 

counts, or distributions. 

While classical data mining methods have been applied to data warehouses with some success (Inmon, 2005), 

symbolic data analysis is particularly well-suited to such contexts. Billard & Diday (2006) demonstrated how SDA 

can be integrated with OLAP structures to improve the quality of descriptive and predictive modeling. 

Furthermore, symbolic classifiers can operate on complex features resulting from roll-up and drill-down operations 

in multidimensional cubes. 

Despite the promise of symbolic methods, their integration into mainstream data warehousing and business 

intelligence workflows remains limited. This is partly due to the lack of mature tools and frameworks, and partly 

due to the higher expertise required to handle symbolic modeling. 

 

3. Materials and Methods 

3.1.  Study Design and Data Collection 

The dataset used in this study was collected from anonymized medical records of patients admitted to Matete 

General Reference Hospital between 2020 and 2022. It includes biometric and physiological indicators such as 

height, weight, heart rate (HR), respiratory rate (RR), cholesterol, and blood glucose. These variables were used 

to build a multidimensional data warehouse, facilitating classification through both classical and symbolic 

methods.  

Glycemic status was classified into four categories based on fasting glucose values: 

• Hypoglycemia: < 60 mg/dL 

• Normal: 60–100 mg/dL 

• Borderline: 110–126 mg/dL 

• Hyperglycemia: > 126 mg/dL 

Nutritional status was determined by calculating Body Mass Index (BMI = weight/height²), with categories 

defined as: 

• < 16.5: Famine 

• 16.5–18.5: Underweight 

• 18.5–25: Normal 

• 25–30: Overweight 
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• 30–35: Moderate Obesity 

• 35–40: Severe Obesity 

• 40: Morbid Obesity 

The objective was to analyze the relationships between glycemic status and nutritional profiles, as well as to 

identify homogeneous subgroups of individuals using two complementary classification methodologies. 

3.2. Methods 

 

3.2.1 Classical Classification Method 

Classical classification allowed us to create homogeneous groupings within our individuals based on the 

observation of descriptors including height, weight, heart rate, respiratory rate, cholesterol, and blood glucose. In 

classification, it is possible to define a dissimilarity measure d: E x E → IR+ where E is the set of individuals. 

Various properties are desirable for such a measure, specifically, ∀ (i,j,k)∈E x E x E: 

• d(i, i) = 0 

• d(i, j) = d(j, i) 

• d(i, j) = 0 ⟹ i = j 

• d(i, j) ≤ d(i, k) + d(k, j) 

• d(i, j) ≤ max (d(i, k), d(k, j)) 

Depending on the properties verified by d, the terminology differs. Thus, we speak of: 

 

Table 1 : Classical Classification Method 

Dissimilarity index (1) (2)    

Distance index (1) (2) (3)   

Gap (1) (2)  (4)  

Distance  (1) (2) (3) (4)  

Ultrametric gap (1) (2)  (4) (5) 

Ultrametric distance (1) (2) (3) (4) (5) 

 

The choice of a measure essentially depends on the nature of the descriptors; most often, the choice falls on an 

appropriate Euclidean distance. Thus, if table X is numerical, we can use the distance M = L. If the set of variables 

is homogeneous, the inverse distance of variances M =diag(1/𝜎𝑗
2) if the set is heterogeneous, or the Mahalanobis 

distance (M = V^-1 where V is the variance-covariance matrix) if we want to sterilize the cloud. 

In the following, we will use classical distances that we will denote ‖.‖. 

 

a) Inertia 

At the center of the most used methods - having good generalist properties and consistent with factorial analysis 

methods in particular - we find the notion of inertia. If we have already defined, in the context of PCA, the inertia 

I of the point cloud, and G its center of inertia, we will now define new notions. If our set of points is grouped into 

K classes (i.e., K sub-clouds N_k), with weights (M_k = ∑_(i∈N_k) m_i)_1≤k≤K, centers of inertia (G_k)_1≤k≤K, 

and inertia (I_k)_1≤k≤K, we define: 

• The intraclass inertia: I_W = ∑_(k=1)^K I_k 

• The interclass inertia: I_B = ∑_(k=1)^K M_k ‖G_k - G‖² 

 

According to Huygens' theorem: I = I_W + I_B 
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A usual classification criterion will then be, for fixed K, to minimize the intraclass inertia (i.e., make the classes 

as homogeneous as possible). This is equivalent to maximizing the interclass inertia (i.e., separating the classes as 

much as possible). 

The quality of a classification can then be evaluated by the ratio I_B/I, interpretable as a proportion of the inertia 

of the n points explained by their synthesis into K barycenters. 

 

b) Partitioning Algorithms: "Mobile Centers" 

Several classification algorithms are geometrically inspired: they are known as partitioning methods, and their 

principle is to start from an arbitrary partition, improved iteratively until convergence. All require choosing a 

number of classes a priori. 

The best-known of these methods is that of mobile centers, mainly due to Forgy (1965). Its principle is as follows: 

if we want K classes, we choose K points in the individual space; we then assign each of the n individuals to the 

one of these K points that is closest to it (in terms of the distance d chosen at the beginning); the K starting points 

are replaced by the K (or fewer, if a point has not attracted anyone...) barycenters of the individuals assigned to 

each; then we reiterate the assignment until convergence. 

 

c) Proposition 

This algorithm decreases the intraclass variance at each iteration. 

Proof 

Let N_k^t be the sub-clouds constituted and C_k^t the points to which they are attached (barycenters of N_k^(t-

1)), at the t-th iteration. 

Consider the following criterion: 
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By minimizing distances for each individual, we also have: ( ) ( )1+ tvtIW . 

We thus obtain  ( ) ( ) ( )tvtItv W +1 , and ( ) ( ).1 tItI WW +  therefore the intraclass inertia decreases. 

This algorithm has been slightly sophisticated in two other methods: k-means (the barycenters are not calculated 

at the end of assignments, but after each one: the order of appearance of individuals is therefore not neutral), and 

dynamic clouds (it is no longer a single point that represents a class). 

However, these methods have the advantage of converging rapidly towards a local minimum of the intraclass 

inertia. On the other hand, their two main drawbacks are having to fix K, and especially converging towards a 

result that depends on the K points initially chosen, often arbitrarily. 

 

3.3. Methodological Framework 

To explore the latent structure of the dataset and identify coherent patient profiles, we adopted a hybrid 

methodological approach combining both classical and symbolic dynamic classification techniques. This two-

pronged strategy increases robustness, enabling a deeper analysis of relationships among metabolic indicators. 

 

3.3.1. Classical Classification Approach (Clustering-Based) 

We initially applied traditional unsupervised classification methods based on Euclidean and Mahalanobis distances 

to segment individuals into homogeneous clusters. The following steps were conducted: 
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• Data Standardization: All variables were normalized to ensure comparable scales. 

• Distance Metric Selection: Depending on variable homogeneity, Euclidean distance or Mahalanobis 

distance was used. 

• Inertia Analysis: Total inertia was decomposed into intra-class and inter-class components to evaluate 

clustering quality. 

• Partitioning Algorithm: The Forgy algorithm (mobile centers) was implemented, initializing K random 

centroids, followed by iterative assignment and centroid update steps until convergence. 

• Optimization Criterion: The intraclass inertia IWI_W was minimized, and the proportion of explained 

inertia IBI\frac{I_B}{I} was used to assess the clustering performance. 

This method was useful in identifying general patterns and grouping individuals with similar biometric profiles. 

 

3.3.2 Symbolic Dynamic Classification Method 

This is a pure partitioning method, which seeks to improve a partition (in the sense of a criterion W), without 

changing the number of groups. 

The method begins by initializing a random partition into k classes, with k fixed by the user. The iterations are 

done in two parts: first, the method associates with each class "a representative," called a prototype. This is the 

representation step. In the case of interval data, the prototype of a class C is the hyperrectangle of gravity L such 

that 

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.This method reassigns each individual to the 

class whose prototype it is closest to; this is the assignment step. 

To complement the classical analysis, a symbolic dynamic method was applied to better capture variability in 

interval and qualitative data. This method involved: 

• Random Initialization: The dataset was partitioned into k symbolic classes. 

• Representation Step: Each class was represented by a prototype (hyperrectangle of gravity), calculated 

as the interval enclosing all individuals in the class for each feature. 

• Assignment Step: Individuals were re-assigned to the class whose prototype was closest according to a 

symbolic dissimilarity measure. 

• Iteration Until Stability: The representation and assignment steps were repeated until the partition 

stabilized. 

This approach allowed us to interpret class characteristics in terms of feature intervals and to incorporate 

uncertainty and variability in physiological measurements. 
 

3.3.3. Comparative Evaluation 

To evaluate the coherence and complementarity of the two approaches: 

• We compared the clusters obtained with both methods using external validation indices (e.g., silhouette 

score, Davies-Bouldin index). 

• Cross-tabulation of symbolic clusters with classical ones was used to assess convergence and divergence 

in group structuring. 

• Special attention was paid to outlier profiles (e.g., obese subjects with hypoglycemia or normal BMI with 

hyperglycemia). 
 

3.3.4. Tools and Implementation 

The analysis leveraged Microsoft SQL Server 2008's BI stack (SSIS/SSAS/SSRS) for robust data management, 

implementing optimized star schemas with T-SQL stored procedures for data preparation. For advanced analytics, 

we utilized Python's scientific stack (NumPy/pandas/scikit-learn) for classical clustering and developed custom 

symbolic algorithms, with seamless integration through SQL CLR. This hybrid approach combined SQL Server's 

enterprise-grade data handling (including partition management for performance and MDX cubes for clinical 

KPIs) with Python's analytical flexibility, while visualization used both matplotlib/seaborn for exploratory analysis 

and SSRS for production dashboards. Key technical considerations included handling interval-valued data types 

in the BI environment and optimizing the ETL pipeline for clinical data quality requirements. 
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4. Results and Discussion 

 

4.1. Construction of the Data Warehouse 

In the framework of our study, we were interested in data on patients from the Matete General Reference Hospital 

with the following parameters: height, weight, heart rate (HR), respiratory rate (RR), cholesterol, and blood 

glucose. 

The data are stored in a data warehouse whose development is presented as follows: 

• Selection of Business Processes to Model 

The business process to model is one of the researched activities. In the health zone activity, decision-makers want 

to better understand the relationship between subjects' glycemic status and nutritional status. The business process 

to model is: status (glycemic and nutritional). 

• Grain Declaration 

For patient management, the most granular data are individual transaction lines entered in the form when they are 

performed. These data consist of age, height, weight, RR, HR, cholesterol, and blood glucose. 

• Choice of Dimensions 

In our study on patient management, we retain only the Location and Time dimensions that we analyze with the 

patient_management fact. 

Table 2 :  Location 

Attribute Data Type 

Id_Location Numeric 

Label Text 

Table 3 : Time: 

Attribute Data Type 

Id_Time Numeric 

Year Numeric 

Month Numeric 

Quarter Numeric 

Identification of Facts 

For our study, the facts collected are ID, height, weight, RR, HR, cholesterol, and blood glucose. The Status Fact 

table contains the calculable items called measures that we have just mentioned and all the primary keys of all the 

dimensions cited, which become foreign keys. The description of this Fact table is as follows: 

 

Table 4 : Identification of Facts 

Attribute Data Type 

Id_Status Numeric 

Age Numeric 

HEIGHT Numeric 

HEIGHT m Numeric 

WEIGHT Numeric 

TEMPERATURE Numeric 

RR Numeric 

HR Numeric 

CHOLESTEROL Numeric 

BLOOD GLUCOSE Numeric 
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Id_Time Numeric 

Id_Location Numeric 

 

 

Star Model of the Data Warehouse 

As shown in Figure 1 presents the star model of our data warehouse. 

 
Figure 1: Star model of the data warehouse 

 

 

Content of the Data Warehouse 

Figure 2 presents the content of our data warehouse. 

Figure 2: Content of the data warehouse 

 

4.2. Application of the Classical Classification Method 

 

This method forms data sets with common characteristics. By applying our method, we found 10 classes (clusters): 

Figure 3 represents the classes obtained by this method. 
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Figure 3: Representation of classes (clusters) 

The classes have an influence on blood glucose and BMI. Each class has a given number of attributes, and the 

attributes of each class have a given number of records: 

1. BLOOD GLUCOSE CATEGORY  

o HYPERGLYCEMIA: 591 

o BORDERLINE: 119 

o NORMAL: 39 

2. BMI CATEGORY  

o Normal weight: 312 

o Malnutrition or famine: 35 

o Underweight: 47 

o Moderate obesity: 128 

 

4.2.1. CLUSTER PROFILE 

 

This provides the attributes that influence the subjects' membership in each class. It then provides the qualifications 

and properties of each class. Figure 4 represents the class profiles. 

 
Figure 4: Class profiles 
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The class legends are summarized as follows:  
 

CLASS 1 

 
 

 

 

 

CLASS 2 

 
 

 

 

 

 

4.3. Application of the Symbolic Dynamic Classification Method 

 

This method obtains as a result 3 prototypes of symbolic objects: 

 
Figure 5: Table representing class prototypes 

 
Figure 6: Table representing variable axes 

Prototypes 1/1 and 1/2 are represented respectively by: 

• A height of length 1 m and middle 1.4 m; 

• A weight of length 93 m and middle 73.5 m; 

• A temperature of length 2.1° and middle 37 m; 

Class 1: Dominated by subjects with normal BMI (81.2%) and underweight individuals 

(18.8%). Most subjects also presented with hyperglycemia (73%), followed by borderline 

glucose levels (24%). 

Class 2: Predominantly composed of individuals with normal BMI (94.9%), along with a small 

proportion of overweight (3.5%) and underweight (1%) subjects. The majority of individuals in 

this class exhibit hyperglycemia (79.4%), with borderline cases (17.7%) and very few 

normoglycemic profiles (2.1%). 
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• A heart rate of length 50 beats/minute and middle 75 m; 

• A respiratory rate of length 32 cycles/minute and middle 32 m; 

• A blood glucose of length 81 milligrams/deciliter and middle 140.5 m; 

• A BMI of length 40 kg/m² and middle 28 m. 

Prototype 2/2 is represented by: 

• A height of length 0.3 m and middle 1.4 m; 

• A weight of length 93 m and middle 70 m; 

• A temperature of length 1.2° and middle 36.5 m; 

• A heart rate of length 44 beats/minute and middle 75 m; 

• A respiratory rate of length 32 cycles/minute and middle 32 m; 

• A blood glucose of length 54 milligrams/deciliter and middle 72 m; 

• A BMI of length 36.5 kg/m² and middle 27.8 m. 

 

Figures 7-10 represent histograms showing the evolution of prototypes. 

 
                    (a)                                                                                         (b)                                                

Figure 7: Histogram of prototype evolution with respect to (a) height and blood glucose, and (b) height and BMI. 

With respect to height and blood glucose, prototype 1/2 presents subjects whose blood glucose is between 100 to 

180 milligrams/deciliter and whose height is between 0.7 to 2 m. While prototype 2/2 presents subjects whose 

blood glucose is between 50 to 100 milligrams/deciliter and whose height is between 1.2 to 1.55 m, as shown in 

(a).With respect to height and BMI, prototype 1/2 presents subjects whose BMI is between 7.5 to 50 kg/m² and 

whose height is between 0.7 to 2 m. While prototype 2/2 presents subjects whose BMI is between 8 to 45 kg/m² 

and whose height is between 1.2 to 1.55 m, as shown in (b). 
 

 
                    (a)                                                                                         (b)                                                

Figure 8: Histogram of prototype evolution with respect to (a) weight and blood glucose, and (b) weight and BMI. 

With respect to weight and blood glucose, prototype 1/2 presents subjects whose blood glucose is between 100 to 

180 milligrams/deciliter and whose weight is between 25 to 115 kg. While prototype 2/2 presents subjects whose 

blood glucose is between 45 to 100 milligrams/deciliter and whose weight is between 20 to 120 kg. 
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With respect to weight and BMI, prototype 1/2 presents subjects whose BMI is between 7.5 to 48 kg/m² and whose 

weight is between 25 to 120 kg. While prototype 2/2 presents subjects whose BMI is between 8 to 45 kg/m² and 

whose weight is between 20 to 115 kg. 

  
                    (a)                                                                                         (b)                                                

 

Figure 9: Histogram of prototype evolution with respect to (a) temperature and blood glucose, and (b) temperature 

and BMI. 

With respect to temperature and blood glucose, prototype 1/2 presents subjects whose blood glucose is between 

100 to 180 milligrams/deciliter and whose temperature is between 35.8 to 38°C. While prototype 2/2 presents 

subjects whose blood glucose is between 45 to 100 milligrams/deciliter and whose temperature is between 35.8 to 

37°C. With respect to temperature and BMI, prototype 1/2 presents subjects whose BMI is between 10 to 50 kg/m² 

and whose temperature is between 35.8 to 38°C. While prototype 2/2 presents subjects whose BMI is between 12 

to 47 kg/m² and whose temperature is between 35.8 to 37°C. 

 
                    (a)                                                                                         (b)                                                

 

Figure 8: Histogram of prototype evolution with respect to (a) heart rate and blood glucose, and (b) heart rate and 

BMI.With respect to heart rate and blood glucose, prototype 1/2 presents subjects whose blood glucose is between 

100 to 180 milligrams/deciliter and whose heart rate is between 50 to 100 beats/minute. While prototype 2/2 

presents subjects whose blood glucose is between 45 to 100 milligrams/deciliter and whose heart rate is between 

53 to 97 beats/minute. With respect to heart rate and BMI, prototype 1/2 presents subjects whose BMI is between 

10 to 50 kg/m² and whose heart rate is between 50 to 100 beats/minute. While prototype 2/2 presents subjects 

whose BMI is between 12 to 47 kg/m² and whose heart rate is between 53 to 97 beats/minute. 

 

4.4. Comparative Study of Results 

4.4.1. Summary of Results 

4.4.1.1 Summary of Classical Methods 

 

Table 5 : Results of the classical method at the blood glucose level 

Class Hyperglycemia Borderline Normal 

Class 1 73% 24.1% 2.8% 

Class 2 79.4% 17.7% 2.1% 

Class 3 76.8% 14.9% 8.3% 

Class 4 79.7% 12.8% 7.5% 

Class 5 84.3% 11.3% 4.4% 
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Class 6 76.6% 17% 6.4% 

Class 7 80.8% 14.5% 4.7% 

Class 8 84.7% 8.6% 6.7% 

Class 9 84.2% 9.7% 6.1% 

Class 10 84.7% 12.6% 2.8% 

All the classes considered show a high percentage for hyperglycemic subjects, a low percentage for borderline 

subjects, and an even lower percentage for normal subjects. 

 

Table 6: Results of the classical method at the BMI level 

Class Normal 

weight 

Overweight Moderate obesity Underweight Severe 

obesity 

Malnutrition 

or famine 

Morbid 

obesity 

Class 1 81.2% 
  

18.8% 
   

Class 2 1.5% 98.3% 1% 
    

Class 3 1.5% 98.3% 1% 
    

Class 4 
 

6% 94% 
    

Class 5 8% 10% 12.5% 
 

55.4% 
 

14% 

Class 6 2.2% 33.3% 55.2% 
 

9.2% 
  

Class 7 39.1% 1% 
 

21.7% 
 

39% 
 

Class 8 61.8% 20.6% 
 

6.9% 2.6% 6.2% 
 

Class 9 38% 17.2% 
 

12% 
 

26.5% 
 

Class 

10 

34.6% 40.6% 11.7% 1% 
 

8.4% 3.7% 

 

The results of the classical method at the BMI level are presented as follows: 

• Class 1 shows 81.2% of subjects with normal weight and 18.8% of underweight subjects. 

• Class 2 shows 1.5% of subjects with normal weight, 98.3% of overweight subjects, and 1% of subjects 

with moderate obesity. The same applies to Class 3. 

• Class 4 shows 6% of overweight subjects and 94% of subjects with moderate obesity. 

• Class 5 shows 8% of subjects with normal weight, 10% of overweight subjects, 12.5% of subjects with 

moderate obesity, and 55.4% with severe obesity. 

• Class 6 shows 2.2% of subjects with normal weight, 33.3% of overweight subjects, 55.2% of subjects 

with moderate obesity, and 9.2% of subjects with severe obesity. 

• Class 7 shows 39.1% of subjects with normal weight, 1% of overweight subjects, 21.7% of underweight 

subjects, and 39% of subjects with malnutrition or famine. 

• Class 8 shows 61.8% of subjects with normal weight, 20.6% of overweight subjects, 6.9% of underweight 

subjects, 2.6% of subjects with severe obesity, and 6.2% of subjects with malnutrition. 

• Class 9 shows 38% of subjects with normal weight, 17.2% of overweight subjects, 12% of underweight 

subjects, and 26.5% of subjects with malnutrition. 

• Class 10 shows 34.6% of subjects with normal weight, 40.6% of overweight subjects, 11.7% of subjects 

with moderate obesity, 1% of underweight subjects, 8.4% of subjects with malnutrition, and 3.7% of 

subjects with morbid obesity. 

 

3.4.1.2. Summary of Symbolic Methods 

 

Table 7: Results of the symbolic method at the BMI level 

Symbolic 

Object 

Normal 

weight 

Morbid 

obesity 

Malnutrition Underweight Moderate 

obesity 

Overweight Severe 

obesity 

Hyperglycemia 41% 1% 5% 7% 17% 23% 6% 

Borderline 49% 2% 6% 9% 14% 19% 2% 

Normal 30% 2% 7% 6% 24% 28% 4% 
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Each symbolic object is dominated by subjects with normal weight. Next are overweight subjects, subjects with 

moderate obesity, underweight subjects, subjects with malnutrition, and subjects with severe obesity. In these 

symbolic objects, the normal weight characteristic prevails. Results confirmed by classical methods. 

Table 8: Results of the symbolic method at the blood glucose level. 

Category_blood glucose 
 

Hyperglycemia HYPER(1.00) 

Borderline INTER(1.00) 

Normal NORM(1.00) 

The table confirms that all hyperglycemia, borderline, and normal are blood glucose (characteristics). The three 

symbolic data analysis methods have similarities in terms of partition into three classes. They present the same 

symbolic objects: borderline, normal, and hyperglycemia. 

The various analyses used give results presented differently but complementary. From a statistical point of view, 

the classical method explores the data in detail but does not adapt to the analysis of complex data. 

While symbolic methods present objects in a synthetic or global manner and cause a loss of information. 

In all classes, subjects are dominated by hyperglycemia followed by borderline subjects and normal subjects 

(Classical method). This is confirmed by the symbolic method, see tables 6 and 7. However, symbolic methods 

are more interpretative because of graphical representations. 

 

4.5.Comparative Discussion of the Two Classification Methods 

 

The classical and symbolic dynamic classification methods were applied to group individuals based on their 

biometric characteristics (height, weight, temperature, heart rate, respiratory rate, blood glucose, and BMI). The 

results reveal significant differences in how each method structures data, identifies subject profiles, and interprets 

health phenomena. 

 4.5.1. Structure and Granularity of Classification 

The classical method formed 10 distinct clusters, providing fine-grained population segmentation. Each cluster is 

characterized by specific proportions of glucose levels (hyperglycemia, borderline, normal) and BMI categories 

(normal weight, moderate obesity, malnutrition, etc.). While this granularity enables targeted analysis, it may 

sometimes lead to redundancy or over-segmentation, particularly when multiple clusters show very similar 

distributions (e.g., Clusters 2 and 3). 

In contrast, the Symbolic Dynamic Classification Method (SDCM) produces three symbolic class prototypes. 

Each prototype is defined by intervals (ranges) and central values (medians) for each variable. This condensed 

representation provides a synthetic yet dynamic view of typical profiles while accounting for measurement 

variability. It thus enables more flexible and symbolic modeling of diverse health states. 

 

4.5. 2. Interpretation of Glucose Results 

Results from the classical method (Table 5) show that all clusters contain a majority of hyperglycemic subjects 

(>70% in most cases). This reflects both the high prevalence of hyperglycemia in the sample and a potential 

limitation of the method in identifying clusters rich in normoglycemic or borderline subjects. This could bias 

clinical interpretation or mask certain at-risk subpopulations. 

The SDCM enables evolutionary analysis through histograms (Figures 7-10). We observe that: 

• Prototype 1/2 primarily represents subjects with glucose levels between 100-180 mg/dL 

• Prototype 2/2 better represents subjects with glucose levels between 45-100 mg/dL 

This distinction models state transitions (from normal to hyperglycemic states), which is difficult to achieve with 

the rigid clusters of classical clustering. 

4.5.3. Analysis of BMI Profiles 

The classical method clearly differentiates clusters by BMI categories, for example: 

• Cluster 1: 81.2% normal weight 

• Cluster 5: 55.4% severe obesity 

• Cluster 6: 55.2% moderate obesity 
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This classification is effective for static identification of weight-based groups. However, it provides no 

information about intra-cluster variation amplitude or potential evolutions. 

The SDCM, through interval ranges and centers for BMI, illustrates internal group variability. For example: 

• Prototype 1/2 shows BMI between 7.5-50 kg/m², covering a wide spectrum from malnutrition to morbid 

obesity. 

This provides better sensitivity to individual case diversity, particularly valuable in clinical contexts where 

measurements may fluctuate (e.g., during treatments or hospitalizations). 

 

4.5.4.Comparative Advantages and Limitations 

To better highlight the respective strengths and limitations of each approach, Table 8 provides a comparative 

overview based on key analytical and practical criteria. This summary facilitates a clearer understanding of how 

each method performs in terms of granularity, interpretability, adaptability to variability, and clinical relevance. 

 

Table 9: Comparative Summary of Classical and Symbolic Classification Approaches 

Criterion Classical Method Dynamic Symbolic Method (DSCM) 

Granularity Very fine (10 distinct classes) Synthetic (3 prototypes) 

Readability Simple class-by-class interpretation More complex symbolic representation 

Intra-class variability Not represented Accounted for via interval lengths 

Temporal evolution Not modeled Possible representation via histograms 

Clinical orientation Good for typed diagnoses Good for monitoring and state transitions 

Risk of over-segmentation High Low 

 

 
Figure 11 : Top plot: Shows the distribution of each Class across different BMI categories and Bottom plot: 

Compares the Symbolic method results (Hyperglycemia, Borderline, Normal) across the same BMI categories. 

 

 

5. Conclusion 

Our work focused on the comparative study of classical and symbolic classification of data in a data warehouse. 

The objective pursued in our work was to design a data warehouse, using a tool for its analysis in order to make 

good decisions and then apply it in the medical context in relation to glycemic status and nutritional status, making 

analyses based on two approaches: classical and symbolic. 

The classical approach allowed the classification of subjects according to their classification profiles in relation to 

all indicators (Blood Glucose, BMI, etc.). It also allowed the formation of sets of classes with common 

characteristics. In our case, the characteristics found were the measures or properties of the indicators used to 

distinguish the classes. Once the classes were established on the sample, any new object should be assigned, thanks 
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to its membership in a homogeneous class (whose behavior is known), by examining its characteristics, to allow 

decision-makers to apply treatments according to its class. 

The symbolic approach was applied to more complex data. It started from symbolic data (variables with multiple 

values, interval, histogram, probability distribution, etc.) equipped with rules and taxonomies and was able to 

provide new knowledge in the form of symbolic objects as output. This approach made it possible to reduce the 

data in the form of intervals, frequency distributions, graphical representations expressing, among other things, 

the internal variation of symbolic descriptions. 

In view of the results, we note that the two approaches each have their particularities, but they find complementary 

results, allowing for more refined analyses. 
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