

Revue-IRS

Revue Internationale de la Recherche Scientifique (Revue-IRS)

ISSN: 2958-8413 Vol. 3, No. 1, Janvier 2025

This is an open access article under the <u>CC BY-NC-ND</u> license.

ANTICIPATION DES RISQUES ET VALORISATION DES OPPORTUNITES DE LA RESPONSABILITE SOCIETALE DES ENTREPRISES (RSE) EN REPUBLIQUE DEMOCRATIQUE DU CONGO.

Cas des services publics de la RDC

MBUNGANI BILO Elvis

Doctorant en sciences economiques

Faculté des sciences economiques et de gestion

UNIVERSITE PEDAGOGIQUE NATIONALE

Republique democratique du Congo

MUSONDA MBAGO BLAISE

Auditeur en sciences economiques

Faculté des sciences economiques et de gestion

UNIVERSITE PEDAGOGIQUE NATIONALE

Republique democratique du Congo

BABOTO BELE Hervé

Auditeur en sciences economiques
Faculté des sciences economiques et de gestion
UNIVERSITE PEDAGOGIQUE NATIONALE

Republique democratique du Congo

Digital Object Identifier (DOI): https://doi.org/10.5281/zenodo.14826656

Résumé

Les services publics jouent un rôle essentiel dans la promotion d'une stratégie de développement durable. Ils garantissent l'accès à des droits fondamentaux tels que l'éducation, la santé et la protection sociale, tout en contribuant à la réalisation d'autres droits comme le logement, l'emploi et un environnement sain. Par ailleurs, les services publics dédiés à la culture préservent le patrimoine national, tandis que les grands réseaux publics participent à l'aménagement du territoire, facilitant le droit au transport et à la communication.

En tant que piliers des libertés individuelles et de la démocratie, les services publics donnent une dimension économique et sociale à des libertés qui, sans leur intervention, resteraient souvent symboliques. Les États investissent massivement dans la recherche, à la fois par le biais de leurs propres institutions et en soutenant les initiatives du secteur privé. Cette intervention publique oriente la recherche vers des domaines cruciaux, souvent négligés par le secteur privé. Cependant, ces services publics font également face à des critiques, dont la pertinence varie selon les contextes.

Selon Carroll (1979), la responsabilité sociétale des entreprises (RSE) regroupe les attentes économiques, légales, éthiques et discrétionnaires de la société envers les organisations à un moment donné. Pour lui, la RSE représente une démarche stratégique favorisant le changement organisationnel. Ce concept a suscité un intérêt croissant auprès des entreprises, des ONG, des institutions européennes et internationales, ainsi que des réseaux d'entreprises. La RSE engage les entreprises à aller au-delà de leurs obligations légales en élargissant leurs responsabilités à l'égard d'autres parties prenantes, notamment les syndicats et les ONG.

Cependant, cet engagement rencontre des obstacles, principalement liés à des contraintes financières et au manque de marge de manœuvre des dirigeants en matière de RSE. Les motivations des acteurs interviewés incluent souvent le renforcement de l'image et de la réputation de l'entreprise, perçues comme des leviers d'efficacité et des investissements rentables permettant de réduire les coûts.

En outre, des pressions externes, telles que les lois ou la nécessité de maintenir un haut niveau d'acceptabilité sociale, jouent un rôle déterminant dans l'adoption de stratégies de RSE. Dans le cas des services publics, des spécificités comme leurs mandats institutionnels ou les attentes gouvernementales en matière d'objectifs sociaux, économiques et environnementaux structurent également leurs initiatives en matière de responsabilité sociétale.

Mots-clés: Responsabilité sociétale des entreprises, services publics, risques, opportunités.

1. INTRODUCTION

La quête du bien-être repose sur divers facteurs, notamment l'augmentation des recettes publiques et l'application des normes internationales, telles que la responsabilité sociétale des entreprises (RSE). Cette dernière, bien qu'initialement perçue comme une contrainte, est aujourd'hui reconnue comme un levier stratégique pour améliorer les performances économiques et sociales.

Les recherches sur la RSE s'intéressent à ses fondements théoriques, aux controverses qu'elle suscite, ainsi qu'à son rôle dans l'anticipation des risques et la valorisation des opportunités au sein des services publics. Ces travaux mettent en lumière l'importance d'une gestion axée sur le développement durable, où l'interaction entre la performance financière et sociale devient essentielle, particulièrement dans les entreprises publiques.

La RSE ne se limite pas à ses contributions positives ; elle englobe également les controverses liées aux impacts des activités des entreprises sur la société. En RDC, les services publics ont souvent été critiqués pour leur faible impact social et environnemental. Selon Morsing (2011), les réponses des entreprises publiques en matière de RSE s'apparentent parfois à des stratégies de légitimation, davantage centrées sur la communication que sur des actions concrètes. Pourtant, ces organisations doivent assumer et réduire les impacts négatifs de leurs activités tout en contribuant activement au développement durable (Turcotte et al., 2011).

Face à ces défis, les gestionnaires publics doivent maîtriser les finances publiques, offrir des services adaptés aux besoins des sociétés modernes et rendre des comptes aux citoyens. Ces exigences nécessitent l'adoption de systèmes de contrôle innovants et adaptés à la complexité des enjeux contemporains.

Depuis 2004, sous l'impulsion des bailleurs de fonds, de nombreux pays, dont la RDC, se sont alignés sur des normes internationales de gestion publique et de contrôle, inspirées des principes de la Nouvelle Gestion Publique. Ce modèle, orienté vers les résultats et la qualité du management, s'éloigne des approches administratives traditionnelles, rigides et centrées sur le respect des règlements.

En outre, la RSE s'intègre dans une vision élargie des rapports entre activités économiques et société. La création de valeurs collectives repose sur la motivation individuelle et une gestion optimisée des potentiels humains, renforçant la culture organisationnelle et l'engagement des parties prenantes.

La Commission européenne définit la RSE comme l'intégration volontaire de préoccupations sociales et environnementales dans les activités des entreprises et leurs relations avec les parties prenantes. Ainsi, une entreprise engagée dans la RSE cherche à avoir un impact positif sur la société tout en maintenant sa viabilité économique (Bercy Infos, 2019).

Cette recherche se penche sur les facteurs déterminants de l'adoption de la RSE par les services publics en RDC, en utilisant une méthodologie mixte combinant analyses qualitatives et quantitatives, dans le cadre d'un positivisme modéré.

La problématique centrale de cette étude s'énonce comme suit : Quels sont les facteurs d'anticipation des risques et de valorisation des opportunités de la RSE au sein des services publics en RDC ?

Pour répondre à cette question, cette étude explore le climat des affaires, les contextes économiques, sociaux, juridiques, politiques et environnementaux qui influencent l'appropriation de la RSE. Elle vise à proposer des stratégies efficaces pour maximiser les opportunités offertes par la RSE tout en réduisant les risques liés à la gestion des services publics.

Hypothèse : Les facteurs influençant l'anticipation des risques et la valorisation des opportunités de la RSE en RDC incluent le climat des affaires, les dynamiques économiques, sociales, juridiques, politiques et environnementales.

2. METHODOLOGIE

Pour mener cette étude, nous avons adopté une approche méthodologique combinant plusieurs méthodes et techniques adaptées à la complexité du sujet.

2.1.Méthodes utilisées

- Méthode historique : Cette méthode a permis d'analyser les faits passés afin de mieux comprendre l'évolution des pratiques liées à la responsabilité sociétale des entreprises (RSE) dans les services publics.
- Méthode quantitative : Nous avons utilisé des outils statistiques pour collecter, traiter et analyser les données recueillies auprès des individus interrogés.
- Méthode hypothético-déductive : En partant d'hypothèses basées sur des cadres théoriques, nous avons confronté celles-ci aux données empiriques afin de valider ou de réfuter nos propositions initiales.

2.2. Techniques utilisées

- Technique documentaire : Nous avons examiné des rapports, des études antérieures et des bases de données afin de contextualiser notre analyse et de construire une base théorique solide.
- Technique d'entretien : Des entretiens semi-directifs ont été menés auprès de responsables de services publics et d'experts en RSE pour recueillir des données qualitatives approfondies.
- Technique d'analyse de contenu : Cette méthode a été utilisée pour examiner systématiquement les documents et les réponses des entretiens, permettant ainsi d'identifier les thèmes récurrents et les éléments significatifs.

3. Échantillonnage

L'échantillon de cette étude se compose de 400 individus sélectionnés dans divers services publics. Cet échantillon, représentatif de la population cible, a été choisi pour garantir une diversité des perspectives. Chaque élément de cet échantillon a fait l'objet d'une collecte de données approfondie, permettant une analyse pertinente des perceptions et des connaissances liées à la RSE.

4. Modélisation des variables

Nous avons utilisé un modèle intégrant des variables qualitatives, adaptées à des contextes variés. Ces variables, telles que « connaissance ou non de la RSE », sont dichotomiques et prennent deux modalités (oui/non).

Lorsque ces variables sont employées comme explicatives, leur estimation est possible grâce à la méthode des moindres carrés ordinaires (MCO). Cependant, lorsque la variable dichotomique est utilisée comme variable à expliquer, cette méthode devient inappropriée.

Dans ce cas, il est nécessaire d'adopter des modèles spécifiques, tels que :

- Le modèle linéaire de probabilité : Utilisé pour analyser la probabilité qu'un événement survienne en fonction des variables explicatives.
- Le modèle logit : Basé sur une fonction logistique, il est particulièrement adapté pour des variables dépendantes binaires (Hosmer et Lemeshow, 2000).
- Le modèle probit : Ce modèle, qui repose sur une distribution normale cumulative, permet une meilleure estimation des relations lorsque les données suivent une courbe gaussienne (Greene, 2018).
- Le modèle tobit ou régression censurée : Idéal pour les situations où les variables dépendantes sont limitées dans leur variation (Maddala, 1983).

5. Modèles adoptés

Dans cette étude, nous avons choisi de développer les modèles logit et probit pour analyser les facteurs explicatifs de la RSE dans les services publics. Ces modèles se révèlent particulièrement efficaces pour examiner les relations entre les variables explicatives (climat des affaires, politiques publiques, etc.) et une variable dépendante dichotomique, telle que l'adoption de pratiques RSE.

5.1. Modèles probit et Logit

La spécification de choix de notre modèle se présente de la manière suivante :

$$Y_i = \beta_o + \beta_1 X_i + u_i \quad (1)$$

Avec:

- Y_i: la connaissance de la responsabilité sociale des entreprises i ;
- X_i: le panier des facteurs explicatifs de la responsabilité sociale des entreprises ;
- β_0 et β_1 : les paramètres à estimer;
- u_i : le terme d'erreur qui incorpore les autres facteurs explicatifs de la responsabilité sociale des entreprises omises au modèle.

Dans un modèle probit ou logit, nous cherchons à modéliser une alternative (Y_i = 0 ou 1) et donc à estimer la probabilité P_i associée à l'événement (Y_i = 1). Dans ce cas, la variable à expliquer ne peut prendre que deux modalités, Y_i = 0 l'agent ou cadre de l'entreprise n'a pas connaissance de la responsabilité sociale des entreprises et Y_i = 1 l'agent ou cadre a connaissance de la responsabilité sociale des entreprises. Un probit et un logit s'appuient en fait sur le même principe, ils ne diffèrent que dans la forme de la fonction de répartition qu'ils utilisent pour calculer l'effet sur la probabilité d'une variation de la variable latente. En effet, lorsque la variable dépendante ne prend que des valeurs qualitatives, l'effet d'une variable indépendante sur la probabilité de dire oui doit être traduit par une fonction de répartition. Cette dernière nous donne la probabilité associée à une valeur donnée de la valeur latente exprimée par la combinaison linéaire des variables indépendantes.

Interprétation des résultats et tests statistiques

Contrairement aux modèles linéaires estimés par la méthode des moindres carrés ordinaires pour lesquels, les coefficients ont des interprétations économiques immédiates en termes de propension marginale, les valeurs des coefficients des modèles ne sont pas directement interprétables. Seuls les signes des coefficients indiquent si la variable agit positivement ou négativement sur la probabilité P_i .

Cependant, il est possible de calculer les effets marginaux afin de connaître la sensibilité de la variation d'une variable explicative sur la probabilité P_i . La significativité des coefficients est appréciée à l'aide des ratios appelés « z-Statistique » car la distribution des rapports du coefficient sur son écart type ne suit pas une loi de Student, comme dans le modèle linéaire général, mais une loi normale. Cette z-Statistique s'interprète de manière classique à partir des probabilités critiques et permet la tenue de tous les tests de significativité concernant les coefficients. Afin de tester l'hypothèse nulle, nous utilisons le ratio du Log vraisemblance. Soit la statistique suivante :

$$LR = -2 (Ln(L R) - Ln(LU))$$

Avec

- LR = valeur de la fonction du Log vraisemblance contrainte sous l'hypothèse nulle et ;
- LU = valeur de la fonction du Log vraisemblance non contrainte.

LR suit, sous l'hypothèse nulle, une distribution d'un x^2 à k degrés de liberté. Si la statistique LR est supérieure au x^2 lu dans la table pour un seuil déterminé, généralement de 5 %, alors nous refusons l'hypothèse nulle, le modèle estimé comporte au moins une variable explicative de significative.

Compte tenu de la caractéristique de la variable à expliquer codée en 0 ou 1, le coefficient de détermination R^2 n'est pas interprétable en termes d'ajustement du modèle, c'est pourquoi on utilise une statistique appelée le pseudo- R^2 donnée par :

Pseudo-
$$R^2 = 1 - \frac{\log(LU)}{\log(LR)}$$

6. RESULTATS

Tableau 1: Répartition de l'échantillon selon la connaissance de RSE

	Fréquence absolue	Fréquence relative	Pourcentage
Oui	299	0,7475	74,75
Non	101	0,2525	25,25
Total	400	1	100

Source : l'auteur, à partir des données de l'enquête

Par rapport aux résultats se trouvant dans ce tableau, il sied de dire que sur l'ensemble de nos enquêtés, 299 soit 74,75% de notre échantillon ont une connaissance sur la

responsabilité sociale des entreprises, tandis que 101 soit 25,25 % de notre échantillon ne connaissent pas vraiment la notion de la responsabilité sociale des entreprises.

Tableau 2: Résultat du test entre RSE et RGM

Tabulation of F	RSE and RGM				
Date: 10/04/22	Time: 05:24				
Sample: 1 400					
Included obser	vations: 400				
m 1 1 2 G					
Tabulation Sun	nmary				
<u>Variable</u>		Categories			
RSE		2			
RGM		3			
Product of Cate	egories	6			
Measures of As		<u>Value</u>			
Phi Coefficient		0.142942			
Cramer's V		0.142942			
Contingency C	oefficient	0.141504			
Test Statistics		<u>df</u>	<u>Value</u>	<u>Prob</u>	
Pearson X2		2	8.172980	0.0168	
Likelihood Rat	io G2	2	9.027616	0.0110	
				RGM	
Count		1	2	3	Total
	0	56	39	6	101
RSE	1	168	84	47	299
	Total	224	123	53	400

Source : nous-même à partir des données de l'enquête

A la lecture de ce tableau portant sur le test d'indépendance de Khi-deux, force est de constater que la statistique de Person est de 1,68%. Ainsi, il y a lieu de rejeter l'hypothèse nulle selon laquelle les variables la responsabilité sociale des entreprises et le régime juridique ne sont pas liés. Donc, le régime juridique et la responsabilité sociale des entreprises sont dépendants.

Test d'indépendance de Khi-deux entre responsabilité sociale des entreprises et type d'activité

Tableau 3: Résultat du test entre RSE et TA

<u>Variable</u>		<u>Catégories</u>								
RSE		2								
TA		8								
Product of Catego	ories	16								
Measures of		<u>Value</u>								
Association										
Phi Coefficient		0.182947								
Cramer's V		0.182947								
Contingency		0.179960								
Coefficient										
Test Statistics		<u>Df</u>	<u>Value</u>	<u>Prob</u>						
Pearson X2		7	13.38784	0.0632						
Likelihood Ratio	G2	7	12.73531	0.0788						
Note: Expected v	alue is	less than 5 in 6	5.25% of cells	(1 of 16).						
						TA				
Count		1	2	3	4	5	6	7	8	Total
0		9	7	10	16	11	13	16	19	101
RSE 1		33	11	17	55	13	36	44	90	299
То	tal	42	18	27	71	24	49	60	109	400

Source : nous-même, à partir de données de l'enquête

Le résultat de ce test nous indique que la statistique de Person est de 6,32%. Ainsi, il y a lieu d'accepter l'hypothèse nulle selon laquelle les variables la responsabilité sociale des entreprises et le type d'activité ne sont pas liés. Donc, ces deux variables sont indépendantes.

Test d'indépendance de Khi-deux entre responsabilité sociale des entreprises et taille du personnel

Tableau 4: Résultat du test entre RSE et TP

Tabulation	of RSE and TP			
Date: 10/03	3/22 Time: 11:29			
Sample: 1 4	100			
Included ob	oservations: 400			
Tabulation	Summary			
<u>Variable</u>		<u>Categories</u>		
RSE		2		
TP		2		
Product of 0	Categories	4		
Measures o	f Association	<u>Value</u>		
Phi Coeffic	ient	0.055562		
Cramer's V		0.055562		
Contingenc	y Coefficient	0.055476		
Test Statisti	ics	<u>df</u>	Value	Prob
Pearson X2	,	1	1.234849	0.2665
Likelihood	Ratio G2	1	1.239441	0.2656
			TP	
Count		1	2	Total
	0	177	21	198
RSE	1	187	15	202
	Total	364	36	400

Source : nous-même, à partir des données de l'enquête

Au regard de résultat de ce test d'indépendance de Khi-deux, on constate que la statistique de Person est de 26,65%. Ainsi, il y a lieu d'accepter l'hypothèse nulle selon laquelle les variables la responsabilité sociale des entreprises et la taille du personnel sont indépendants.

Test d'indépendance de Khi-deux entre responsabilité sociale des entreprises et implantation du service public

Tableau 5: Résultat du test entre RSE et IM

<u>Variable</u>		<u>Catégories</u>			
RSE		2			
IM		3			
Product of Categ	gories	6			
Measures of Ass	sociation	Value			
Phi Coefficient		0.063608			
Cramer's V		0.063608			
Contingency Co	Contingency Coefficient				
Test Statistics		<u>Df</u>	<u>Value</u>	<u>Prob</u>	
Pearson X2		2	1.614348	0.4461	
Likelihood Ratio	o G2	2	1.618361	0.4452	
				IM	
Count		1	2	3	Total
	0	24	56	117	197
RSE 1		32	49	121	202
	Total	56	105	238	399

Source : nous-même, à partir des données de l'enquête

Le résultat du test d'indépendance de Khi-deux, nous confirme que la responsabilité sociale des entreprises et l'implantation du service public ne sont pas liées, comme en témoigne la statistique de Person (44,61%) supérieur à 5%.

Test d'indépendance de Khi-deux entre responsabilité sociale des entreprises et connaissance des instruments

Tableau 6 : Résultat du test entre RSE et CI

<u>Variable</u>		<u>Categories</u>		
RSE		2		
CI		2		
Product of Categories		4		
Measures of Asso	ociation	<u>Value</u>		
Phi Coefficient		0.005432		
Cramer's V		0.005432		
Contingency Coe	Contingency Coefficient			
Test Statistics		<u>df</u>	<u>Value</u>	<u>Prob</u>
Pearson X2		1	0.011801	0.9135
Likelihood Ratio	G2	1	0.011781	0.9136
			CI	
Count		0	1	Total
	0	32	69	101
RSE 1		93	206	299
	Total	125	275	400

Source : nous-même, à partir des données de l'enquête Le résultat du test d'indépendance de Khi-deux, nous confirme que la responsabilité sociale des entreprises et la connaissance des instruments ne sont pas liées, comme en témoigne la statistique de Person (91,35%) supérieur à 5%.

Analyse de l'impact des facteurs RGM, TA, TP, IM et CI sur la responsabilité sociale des entreprises

Les résultats complets fournis par Eviews 10 sont les suivants :

Tableau 7 : Résultat de l'estimation par le modèle logit

Dependent Variable: RSE										
Method: ML - Binary Logit (Newton-Raphson / Marquardt steps)										
Date: 10/04/22 Time: 05:	22									
Sample: 1 400										
Included observations: 400										
Convergence achieved after	r 3 iterations	•								
Coefficient covariance con	nputed using observed	d Hessian	•							
Variable	Coefficient	Std. Error	z-Statistic	Prob.						
С	2.198519	0.740286	2.969825	0.0030						
RGM	0.155885	0.169834	0.917867	0.3587						
TA	0.128053	0.052493	2.439430	0.0088						
TP	1.150236	0.372998	3.083757	0.0020						
IM	-0.166990	0.170399	-0.979996	0.3271						
CI	0.025099	0.252938	0.099228	0.9210						
McFadden R-squared	0.560010	Mean dependen	nt var	0.747500						
S.D. dependent var	0.434991	S.E. of regression	on	0.429708						
Akaike info criterion	1.127246	Sum squared re	sid	72.75179						
Schwarz criterion	1.187118	Log likelihood		-99.4491						
Hannan-Quinn criter.	1.150956	Deviance		438.8983						
Restr. Deviance	452.0520	Restr. log likeli	hood	-226.0260						
LR statistic	13.15376	Avg. log likelih	nood	-0.548623						
Prob(LR statistic)	0.021980									
Obs with Dep=0	101	Total obs		400						
Obs with Dep=1	299	299								

Source : nous-même, à partir des données de l'enquête

A la lecture de ce tableau il ressort que : les facteurs type d'activités et taille du personnel de service public ont une probabilité très élevée de pouvoir expliquer de manière significative la responsabilité sociale des entreprises, car la probabilité critique associée à leurs paramètres estimés est inférieur à 5%.

Par contre, les facteurs régime juridique, implantation du service public et connaissance des instruments de la responsabilité sociale des entreprises ont une probabilité très faible pour expliquer la responsabilité sociale des entreprises.

Au regard du « LR statistic » dont la probabilité est inférieure à 5% (soit : 0,021980) nous concluons à la significativité globale des paramètres estimés. Toutefois, le « R^2 de McFadden » est égal à 56%, le pouvoir explicatif du modèle est suffisamment bon et, le modèle est valide sur le plan statistique.

Enfin, Mean dependent var » = 0,7475 : autant dire qu'il y a 74,75% d'individus dans l'échantillon considéré connaissent la responsabilité sociale des entreprises.

Tableau 8: Vérification de la qualité du modèle LOGIT estimé ou la bonté de

l'ajustement par le test de Hosmer-Lemeshow

		e of Risk	<u> </u>	Dep=0	CSIIO W	Dep=1	Total	H-L
	Low	High	Actual	Expect	Actual	Expect	Obs	Value
1	0.4040	0.6870	18	18.8994	22	21.1006	40	0.08114
2	0.6870	0.7232	10	11.2660	30	28.7340	40	0.19805
3	0.7298	0.7494	16	10.3360	24	29.6640	40	4.18526
4	0.7494	0.7554	9	9.88695	31	30.1130	40	0.10569
5	0.7554	0.7627	10	9.60654	30	30.3935	40	0.02121
6	0.7627	0.7743	6	9.28509	34	30.7149	40	1.51363
7	0.7743	0.7874	8	8.75360	32	31.2464	40	0.08305
8	0.7898	0.7963	8	8.26364	32	31.7364	40	0.01060
9	0.7981	0.8145	9	7.70361	31	32.2964	40	0.27020
10	0.8145	0.8628	7	6.99912	33	33.0009	40	1.3E-07
		Total	101	101.000	299	299.000	400	6.46882
H-L	H-L Statistic 6.4688			Prob. Chi-Sq(8)		0.5949		
And	Andrews Statistic 7.		7.1488		Prob. Chi-Sq(10)		0.7113	

Source : nous-même, à partir des données de l'enquête

La probabilité associée à la statistique de Hosmer-Lemeshow/H-L Statistic calculée étant supérieure à 5% (soit, prob = 0,5949), il y a lieu considérer que l'ajustement est bon. A cet effet, lorsque H-L stat est grande, de plus en plus la différence entre les valeurs observées et prédites est prononcée, avec comme conséquence le rejet de l'hypothèse nulle.

Tableau 9 : Calcul du pourcentage de bonnes prédictions et celui de prédictions fausses

	Est	timated Equ	ation	Constant Probability			
	Dep=0	Dep=1	Total	Dep=0	Dep=1	Total	
P(Dep=1)<=	9	6	15	0	0	0	
С							
P(Dep=1)>C	92	293	385	101	299	400	
Total	101	299	400	101	299	400	
Correct	9	293	302	0	299	299	
% Correct	8.91	97.99	75.50	0.00	100.00	74.75	
% Incorrect	91.09	2.01	24.50	100.00	0.00	25.25	
Total Gain*	8.91	-2.01	0.75				
Percent	8.91	NA	2.97				
Gain**							
		timated Equ	1		nstant Prob		
	Dep=0	Dep=1	Total	Dep=0	Dep=1	Total	
E(# of	28.24	72.76	101.00	25.50	75.50	101.00	
Dep=0)	20.2	72170	101.00	20.00	70.00	101.00	
E(# of	72.76	226.24	299.00	75.50	223.50	299.00	
Dep=1)							
Total	101.00	299.00	400.00	101.00	299.00	400.00	
Correct	28.24	226.24	254.49	25.50	223.50	249.01	
% Correct	27.97	75.67	63.62	25.25	74.75	62.25	
% Incorrect	72.03	24.33	36.38	74.75	25.25	37.75	
Total Gain*	2.72	0.92	1.37				
Percent	3.63	3.63	3.63				
Gain**							

Source : nous-même, à partir des données de l'enquête

Le taux de bonne prédiction (TBP= $\frac{9+293}{400}$) est de 75,5% par conséquent, l'ajustement alors bon. Par contre, le taux de fausses prédictions (TFP= $\frac{92+6}{400}$) est de 24,5%. En annexe, nous présentons les effets marginaux.

Analyse de l'impact des facteurs NR, LB, ORP, IR et NRA sur la responsabilité sociale des entreprises

De même, les résultats complets fournis par Eviews 10 sont les suivants :

Tableau 10 : Résultat de l'estimation par le modèle logit

Dependent Variable: RSE										
Method: ML - Binary L	ogit (Newton-Raphs	son / Marquardt st	eps)							
Date: 10/04/22 Time: 0	05:26									
Sample: 1 400										
Included observations: 400										
Convergence achieved a	after 4 iterations									
Coefficient covariance of	computed using obser	rved Hessian								
Variable	Coefficient	Std. Error	z-Statistic	Prob.						
С	0.585228	0.512928	1.140955	0.2539						
NR	0.189049	0.076173	2.481837	0.0132						
LB	-0.027280	0.094290	-0.289314	0.7723						
ORP	0.114751	0.081525	1.407550	0.1593						
IR	0.007391	0.166500	0.044390	0.9646						
NRA	0.005880	0.081808	0.071872	0.9427						
McFadden R-squared	0.537998	Mean depende	ent var	0.747500						
S.D. dependent var	0.434991	S.E. of regress	sion	0.436237						
Akaike info criterion	1.152121	Sum squared	resid	74.97913						
Schwarz criterion	1.211993	Log likelihoo	d	-104.4243						
Hannan-Quinn criter.	1.175831	Deviance		448.8485						
Restr. Deviance	452.0520	Restr. log like	lihood	-226.0260						
LR statistic	12.203516	Avg. log likel	ihood	-0.561061						
Prob(LR statistic)	0.038643									
Obs with Dep=0	101	Total obs		400						
Obs with Dep=1	299									

Source : nous-même, à partir des données de l'enquête

A la lumière de ce tableau il en résulte que : seul le facteur norme existant qui a une forte probabilité de pouvoir expliquer de manière significative la responsabilité sociale des entreprises, car la probabilité critique associée à leurs paramètres estimés est inférieur à 5%.

Au regard du « LR statistic » dont la probabilité est inférieure à 5% (soit : 0.038643) nous concluons à la significativité globale des paramètres. Toutefois, le « R^2 de

McFadden » est égal à 53,79%, le pouvoir explicatif du modèle est suffisamment bon et, le modèle est valide sur le plan statistique.

Enfin, Mean dependent var » = 0,7475 : autant dire qu'il y a 74,75% d'individus dans l'échantillon considéré connaissent la responsabilité sociale des entreprises.

Tableau 11 : Vérification de la qualité du modèle LOGIT estimé ou la bonté de l'ajustement par le test de Hosmer-Lemeshow

	1 ajustement par le test de Hosmer-Lemesnow									
	Quantil	e of Risk		Dep=0		Dep=1	Total	H-L		
	Low	High	Actual	Expect	Actual	Expect	Obs	Value		
1	0.6667	0.6933	9	12.7868	31	27.2132	40	1.64839		
2	0.6933	0.7081	12	11.9602	28	28.0398	40	0.00019		
3	0.7081	0.7243	10	11.3950	30	28.6050	40	0.23882		
4	0.7254	0.7384	15	10.7092	25	29.2908	40	2.34776		
5	0.7384	0.7530	11	10.1729	29	29.8271	40	0.09019		
6	0.7530	0.7598	14	9.71797	26	30.2820	40	2.49229		
7	0.7608	0.7739	8	9.32592	32	30.6741	40	0.24583		
8	0.7741	0.7829	11	8.87736	29	31.1226	40	0.65231		
9	0.7843	0.7974	7	8.37352	33	31.6265	40	0.28495		
10	0.7992	0.8228	4	7.68112	36	32.3189	40	2.18343		
		Total	101	101.000	299	299.000	400	10.1842		
H-L Statistic 10.1842			Prob. Chi-Sq(8)		0.2523					
Andrews Statistic		10.9064		Prob. Chi	-Sq(10)	0.3649				

Source : nous-même, à partir des données de l'enquête

La probabilité associée à la statistique de Hosmer-Lemeshow/H-L Statistic calculée étant supérieure à 5% (soit, prob = 0,2523), il y a lieu considérer que l'ajustement est bon. A cet effet, lorsque H-L stat est grande, de plus en plus la différence entre les valeurs observées et prédites est prononcée, avec comme conséquence le rejet de l'hypothèse nulle.

Tableau 12 : Calcul du pourcentage de bonnes prédictions et celui de prédictions fausses

•	Est	imated Equ	ation	Constant Probability			
	Dep=0	Dep=1	Total	Dep=0	Dep=1	Total	
P(Dep=1)<= C	9	6	15	0	0	0	
P(Dep=1)>C	92	293	385	101	299	400	
Total	101	299	400	101	299	400	
Correct	9	293	302	0	299	299	
% Correct	8.91	97.99	75.50	0.00	100.00	74.75	
% Incorrect	91.09	2.01	24.50	100.00	0.00	25.25	
Total Gain*	8.91	-2.01	0.75				
Percent Gain**	8.91	NA	2.97				
	Est	imated Equ	ation	Co	Constant Probability		
	Dep=0	Dep=1	Total	Dep=0	Dep=1	Total	
E(# of Dep=0)	28.24	72.76	101.00	25.50	75.50	101.00	
E(# of Dep=1)	72.76	226.24	299.00	75.50	223.50	299.00	
Total	101.00	299.00	400.00	101.00	299.00	400.00	
Correct	28.24	226.24	254.49	25.50	223.50	249.01	
% Correct	27.97	75.67	63.62	25.25	74.75	62.25	
% Incorrect	72.03	24.33	36.38	74.75	25.25	37.75	
Total Gain*	2.72	0.92	1.37				
Percent Gain**	3.63	3.63	3.63				

Source : nous-même, à partir des données de l'enquête

Le taux de bonne prédiction (TBP= $\frac{9+293}{400}$) est de 75,5% par conséquent, l'ajustement alors bon. Par contre, le taux de fausses prédictions (TFP= $\frac{92+6}{400}$) est de 24,5%. En annexe, nous présentons les effets marginaux.

Analyse de l'impact des facteurs FP, MO, CRO, OP et TRS sur la responsabilité sociale des entreprises

Enfin, les résultats complets fournis par Eviews 10 sont les suivants :

Tableau 13 : Résultat de l'estimation par le modèle logit

Dependent Variable: RS				
Method: ML - Binary Lo	ogit (Newton-Raphs	on / Marquardt steps)	
Date: 10/04/22 Time: 0	05:30			
Sample: 1 400				
Included observations: 4	00			
Convergence achieved a	fter 3 iterations			
Coefficient covariance c	omputed using obser	rved Hessian		
Variable	Coefficient	Std. Error z-Statistic		Prob.
С	1.075708	0.455108 2.363635		0.0181
FP	-0.169397	0.259746 -0.652165		0.5143
MO	0.554006	0.276158 2.006119		0.0475
CRO	-0.001919	0.056695 -0.033840		0.9730
OP	0.093248	0.259446	0.359411	0.7193
TRS	0.160414	0.069816	2.297668	0.0369
McFadden R-squared	0.534323	Mean dependent var		0.747500
S.D. dependent var	0.434991	S.E. of regression	0.436951	
Akaike info criterion	1.156275	Sum squared resi	75.22487	
Schwarz criterion	1.216147	Log likelihood	-105.2550	
Hannan-Quinn criter.	1.179985	Deviance	450.5099	
Restr. Deviance	452.0520	Restr. log likelihe	-226.0260	
LR statistic	15.54209	Avg. log likeliho	-0.563137	
Prob(LR statistic)	0.022161			
Obs with Dep=0	101	Total obs		400
Obs with Dep=1	299			

Source : nous-même, à partir des données de l'enquête

A la lumière de ce tableau il en découle que : les facteurs mécanisation de l'audit interne et le types de risque ont une probabilité élevée de pouvoir expliquer de manière significative la responsabilité sociale des entreprises, car la probabilité critique associée à leurs paramètres estimés est inférieur à 5%.

Au regard du « LR statistic » dont la probabilité est inférieure à 5% (soit : 0,02214) nous concluons à la significativité globale des paramètres. Toutefois, le « \mathbb{R}^2 de

McFadden » est égal à 53,43%, le pouvoir explicatif du modèle est suffisamment bon et, le modèle est valide sur le plan statistique.

Enfin, Mean dependent var » = 0,7475 : autant dire qu'il y a 74,75% d'individus dans l'échantillon considéré connaissent la responsabilité sociale des entreprises.

Tableau 14: Vérification de la qualité du modèle LOGIT estimé ou la bonté de

l'ajustement par le test de Hosmer-Lemeshow

	Quantile of Risk			Dep=0		Dep=1	Total	H-L
	Low	High	Actual	Expect	Actual	Expect	Obs	Value
1	0.6937	0.7143	13	11.8195	27	28.1805	40	0.16736
2	0.7143	0.7207	8	11.3623	32	28.6377	40	1.38970
3	0.7214	0.7311	14	10.9236	26	29.0764	40	1.19192
4	0.7311	0.7410	8	10.5362	32	29.4638	40	0.82882
5	0.7410	0.7491	9	10.1946	31	29.8054	40	0.18785
6	0.7491	0.7523	12	9.99071	28	30.0093	40	0.53863
7	0.7526	0.7613	11	9.74200	29	30.2580	40	0.21475
8	0.7613	0.7721	8	9.31918	32	30.6808	40	0.24346
9	0.7721	0.7828	12	8.92947	28	31.0705	40	1.35929
10	0.7831	0.8208	6	8.18250	34	31.8175	40	0.73184
		Total	101	101.000	299	299.000	400	6.85363
H-L	H-L Statistic 6.8536			Prob. Chi-Sq(8)		0.5525		
And	Andrews Statistic 7.21		7.2141		Prob. Chi-Sq(10)		0.7051	

Source : nous-même, à partir des données de l'enquête

La probabilité associée à la statistique de Hosmer-Lemeshow/H-L Statistic calculée étant supérieure à 5% (soit, prob = 0,5525), il y a lieu considérer que l'ajustement est bon. A cet effet, lorsque H-L stat est grande, de plus en plus la différence entre les valeurs observées et prédites est prononcée, avec comme conséquence le rejet de l'hypothèse nulle.

Tableau 15 : Calcul du pourcentage de bonnes prédictions et celui de prédictions fausses

	Estimated Equation			Constant Probability			
	Dep=0	Dep=1	Total	Dep=0	Dep=1	Total	
P(Dep=1)<=C	9	6	15	0	0	0	
P(Dep=1)>C	92	293	385	101	299	400	
Total	101	299	400	101	299	400	
Correct	9	293	302	0	299	299	
% Correct	8.91	97.99	75.50	0.00	100.00	74.75	
% Incorrect	91.09	2.01	24.50	100.00	0.00	25.25	
Total Gain*	8.91	-2.01	0.75				
Percent Gain**	8.91	NA	2.97				
	Estimated Equation			Constant Probability			
	Dep=0	Dep=1	Total	Dep=0	Dep=1	Total	
E(# of Dep=0)	28.24	72.76	101.00	25.50	75.50	101.00	
E(# of Dep=1)	72.76	226.24	299.00	75.50	223.50	299.00	
Total	101.00	299.00	400.00	101.00	299.00	400.00	
Correct	28.24	226.24	254.49	25.50	223.50	249.01	
% Correct	27.97	75.67	63.62	25.25	74.75	62.25	
% Incorrect	72.03	24.33	36.38	74.75	25.25	37.75	
Total Gain*	2.72	0.92	1.37				
Percent Gain**	3.63	3.63	3.63				

Source : nous-même, à partir des données de l'enquête

Le taux de bonne prédiction (TBP= $\frac{9+293}{400}$) est de 75,5% par conséquent, l'ajustement alors bon. Par contre, le taux de fausses prédictions (TFP= $\frac{92+6}{400}$) est de 24,5%. En annexe, nous présentons les effets marginaux.

Au regard de tous résultats obtenus il en résulte que : les facteurs type d'activités, taille du personnel de service public, norme existant, mécanisation de l'audit interne et types de risque ont une forte probabilité d'être considérés comme des facteurs explicatifs de la responsabilité sociale des entreprises. Par contre, les autres facteurs ont une faible probabilité de pouvoir expliquer la responsabilité sociale des entreprises.

Comme tous les signes attendus sont respectés et, sont tous positifs, nous concluons que pour promouvoir la responsabilité sociale des entreprises, il est avantageux de tenir compte du type d'activité d'une entreprise. Ensuite, la taille du personnel dans un service

public, la norme existant, la mécanisation de l'audit interne et l'identification de type de risques sont de facteurs plausibles de la responsabilité sociale des entreprises.

6. CONCLUSION

Cette étude a exploré l'anticipation des risques et la valorisation des opportunités liées à la Responsabilité Sociétale des Entreprises (RSE) dans le contexte des services publics. L'objectif principal était de déterminer les facteurs clés influençant l'appropriation de la RSE au sein des services publics et d'évaluer si son intégration pouvait améliorer leur gestion.

En partant d'hypothèses basées sur les facteurs influençant l'anticipation des risques et la valorisation des opportunités de la RSE en RDC incluent le climat des affaires, les dynamiques économiques, sociales, juridiques, politiques et environnementales.

L'analyse des données, réalisée à l'aide des modèles logit, a révélé que des facteurs tels que le type d'activités, la taille des effectifs, les normes existantes, la mécanisation des audits internes et l'identification des risques avaient une influence significative sur l'anticipation des risques et la valorisation des opportunités liées à la RSE.

En revanche, d'autres facteurs, comme le régime juridique et la connaissance des instruments de RSE, se sont révélés moins pertinents. Les résultats ont également mis en évidence que l'engagement sociétal des services publics était souvent motivé par la volonté de renforcer l'image et la réputation de l'organisation, tout en optimisant la gestion des ressources à moyen et long terme. Cependant, les freins à cet engagement, notamment le manque de ressources financières et de latitude managériale, demeurent des obstacles majeurs à surmonter.

Enfin, l'étude souligne l'importance des valeurs des dirigeants et de la culture organisationnelle dans la mise en œuvre de la RSE. La taille des entreprises, la disponibilité des ressources financières et la mobilisation d'outils adaptés jouent un rôle déterminant dans l'efficacité des initiatives de RSE.

Recommandations

- ✓ Améliorer les conditions de travail et les relations professionnelles : Intégrer les avantages de la RSE dans le cadre de la nouvelle gestion publique ;
- ✓ Renforcer les compétences des salariés : Développer des programmes de formation axés sur la théorie des parties prenantes et l'engagement sociétal ;
- ✓ Promouvoir la RSE comme levier de développement durable : Encourager son adoption pour améliorer la gestion des services publics ;

- ✓ Respecter strictement les normes et obligations légales : Déclarer tous les employés aux organismes de sécurité et de protection sociales ;
- ✓ Favoriser le dialogue social : Consolider les mécanismes de communication entre les parties prenantes pour améliorer la cohésion organisationnelle.

BIBLIOGRAPHIE

- Abolia, J.-M. (2005). Finances et comptabilité de l'État en République Démocratique du Congo : principes, pratiques et perspectives. Kinshasa : BESIF.
- Adams, B., Boyer, B., & Laurent, P. (2003). La comptabilité communale (3e éd.). Paris : DEXIA Crédit Local LGDJ.
- Aubrun, M. (2000). Responsabilité sociétale : comprendre, déployer, évaluer. Paris : AFNOR.
- Badie, B. (1995). L'État importé : l'occidentalisation de l'ordre politique. Paris : Fayard.
- Beyssade, S. (1997). La commune et son administration. Paris : Vuibert.
- Chandler, A. D. (1992). Organisation et performance des entreprises (Vol. 1). Paris : Éditions de l'Organisation.
- Cohen, E. (1991). Gestion financière et développement financier. Paris : EDICEF.
- Charpentier, P. (2007). Management et gestion des organisations. Paris : Armand Colin.
- Demeestere, R. (2005). Le contrôle de gestion dans le secteur public (2e éd.). Paris : LGDJ.
- Grawitz, M. (2001). Méthodes des sciences sociales (11e éd.). Paris : Dalloz.
- Helfer, J.-P. (2012). La responsabilité sociale des entreprises : défis, risques et nouvelles pratiques. Paris : Eyrolles.
- Hosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression. Wiley.
- Maddala, G. S. (1983). Limited-dependent and Qualitative Variables in Econometrics. Cambridge University Press.