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Abstract: This article reviews the use of the Analytic Hierarchy Process (AHP) combined with Geographic 

Information Systems (GIS) and remote sensing for natural-hazard susceptibility mapping, with a focus on 

lessons applicable to Kinshasa. A total of 62 peer-reviewed studies published between 2000 and 2024 were 

analyzed, covering six major hazard types: flooding (18 studies), landslides (15), erosion (10), urban heat 

islands and air quality (6), groundwater recharge and water deficit (7), and multi-hazard analyses (6). 

Across all hazards, the most frequently applied criteria were land use/land cover (78%), slope (75%), rainfall 

(58%), soil type (46%), and geology (38%), reflecting the dominant role of topographic and land-cover factors 

in susceptibility assessment. Validation practices varied, but ROC/AUC (Receiver Operating Characteristic/ 
Area Under the Curve) was used in 50% of studies, with a median AUC of 0.82 (IQR: 0.76–0.88), indicating 

good model performance. However, only 8% of studies included field-based or inventory validation, 

underscoring the need for more robust approaches. 

For Kinshasa, three key recommendations emerge: (1) prioritize slope and land-use mapping at high spatial 

resolution to capture fine-scale urban and geomorphological dynamics; (2) strengthen validation protocols by 

combining ROC/AUC with field inventories and community-based hazard reporting; and (3) promote a multi-

hazard framework integrating flooding, erosion, and landslides, which are strongly interrelated in tropical urban 

environments. 

This structured review highlights both the strengths and limitations of AHP-based hazard mapping and provides 

a methodological baseline for applying GIS and remote sensing in rapidly growing African cities facing climate 

and land-use pressures 
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Processus Analytique Hiérarchique avec SIG et Télédétection 

pour l’Évaluation de la Susceptibilité aux Aléas Naturels : 

Applications, Tendances et Enseignements pour Kinshasa 

 
 

Résumé: Cet article propose une revue de l’utilisation du Processus Analytique Hiérarchique (AHP), combiné 

aux Systèmes d’Information Géographique (SIG) et à la télédétection, pour la cartographie de la susceptibilité 

aux aléas naturels, en mettant l’accent sur les enseignements applicables à Kinshasa. Un total de 62 études 

évaluées par les pairs, publiées entre 2000 et 2024, ont été analysées. Elles couvrent six grands types d’aléas : 

les inondations (18 études), les glissements de terrain (15), l’érosion (10), les îlots de chaleur urbains et la 

qualité de l’air (6), la recharge des nappes et le déficit hydrique (7), ainsi que les analyses multi-aléas (6). 

Dans l’ensemble, les critères les plus fréquemment mobilisés sont l’occupation du sol et la couverture terrestre 

(78 %), la pente (75 %), les précipitations (58 %), le type de sol (46 %) et la géologie (38 %). Cela reflète le 

rôle dominant des facteurs topographiques et de l’occupation du sol dans l’évaluation de la susceptibilité. Les 

pratiques de validation apparaissent variables : la courbe ROC (Receiver Operating Characteristic) et l’aire sous 

la courbe (AUC, Area Under the Curve) sont utilisées dans 50 % des études, avec une valeur médiane d’AUC 

de 0,82 et un intervalle interquartile (IQR, Interquartile Range) de 0,76–0,88, ce qui traduit une performance 

globalement satisfaisante des modèles. Toutefois, seules 8 % des études intègrent une validation par inventaire 

ou par données de terrain, soulignant la nécessité de méthodes plus robustes. 

Trois recommandations principales émergent pour Kinshasa : (1) privilégier la cartographie de la pente et de 

l’occupation du sol à haute résolution spatiale afin de saisir les dynamiques urbaines et géomorphologiques 

fines ; (2) renforcer les protocoles de validation en combinant ROC/AUC avec des inventaires de terrain et des 
signalements communautaires d’aléas ; et (3) promouvoir une approche multi-aléas intégrant inondations, 

érosion et glissements de terrain, fortement interconnectés dans les environnements urbains tropicaux. 

Cette revue structurée met en évidence à la fois les atouts et les limites des approches AHP pour la cartographie 

de la susceptibilité et propose une base méthodologique pour l’application des SIG et de la télédétection dans 

les villes africaines en forte croissance, confrontées aux pressions du climat et de l’occupation des sols 

 

Mots-clés: Processus Analytique Hiérarchique (AHP) ; SIG et Télédétection ; Susceptibilité aux Aléas Naturels 

; Évaluation Multi-aléas ; Kinshasa  
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1 Introduction 

The increasing frequency and intensity of natural hazards—particularly in tropical regions marked by rapid 

urbanization and limited infrastructure—has highlighted the need for integrated and systematic risk assessment 

methods. One of the most widely applied tools for multi-criteria spatial decision-making in natural hazard analysis 

is the Analytic Hierarchy Process (AHP), introduced by Saaty in the 1980s. AHP allows for the structured 

weighting of diverse risk factors based on expert knowledge and pairwise comparisons, offering a transparent 

framework for integrating heterogeneous data sources (Saaty, 1980). 

When AHP is combined with Geographic Information Systems (GIS) and Remote Sensing (RS), its utility in 

hazard mapping and spatial prioritization is significantly enhanced. GIS provides spatial analysis capabilities, 

while remote sensing supplies up-to-date environmental indicators such as land cover, vegetation indices, surface 
temperature, and elevation. This integration—AHP-GIS-RS—has been effectively employed in numerous studies 

to produce susceptibility maps for various natural hazards including floods, landslides, erosion, urban heat islands, 

and more (Rahmati et al., 2016; Dou et al., 2019; Choudhury et al., 2021). 

AHP’s popularity is due to its simplicity, flexibility, and ability to incorporate both quantitative and qualitative 

data, especially in data-poor environments. This makes it particularly relevant for urban tropical regions, where 

access to detailed empirical datasets is often limited (Kourgialas & Karatzas, 2017; Fernandez & Lutz, 2010). 

Furthermore, AHP has proven adaptable to single- and multi-hazard contexts, and can be validated through field 

data, statistical metrics (e.g., ROC curves), or expert feedback (Youssef et al., 2016). 
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This article reviews the use of the Analytic Hierarchy Process (AHP) in conjunction with Geographic Information 

Systems (GIS) and remote sensing for natural hazard assessment. Approximately 62 scientific sources—including 

peer-reviewed articles, academic theses, and open-access publications—were consulted, primarily accessed via 

Google Scholar, ScienceDirect, SpringerLink, and DOAJ. 

The review focused on: 

• The types of natural hazards studied (e.g., floods, landslides, erosion, urban heat islands); 

• The criteria used in the AHP framework and their justification; 

• Weighting methods (e.g., expert judgment, consistency analysis); 

• The integration of AHP with geospatial data via GIS or remote sensing; 

• Reported advantages and limitations of the method. 

This thematic review helped identify recurring patterns, innovative practices, and the overall suitability of AHP 

for multi-hazard analysis in rapidly urbanizing and data-limited settings such as Kinshasa. 

This literature review examines how AHP, in combination with GIS and RS, has been used to assess different 

types of natural hazards. Each section presents: 

• The most frequently used criteria and indicators for each hazard type; 

• The rationale for their selection and weighting; 

• The mapping outcomes and accuracy assessment approaches; 

• The contribution of AHP in multi-hazard and multi-scale assessments; 

• The strengths, limitations, and methodological improvements reported in the literature. 

The ultimate goal is to identify the most relevant and effective criteria, structures, and approaches that can inform 

an integrated hazard assessment in Kinshasa. Given Kinshasa’s exposure to multiple hazards (flooding, landslides, 

erosion, heat stress, groundwater challenges), this methodology review aims to justify the choice of AHP-GIS-RS 

for multi-hazard mapping in a complex tropical urban context. 

2 AHP-Based Assessment of Specific Natural Hazards 

2.1 Flood Hazard Assessment 

Floods are among the most frequently studied hazards in the application of the AHP-GIS-RS framework, 

particularly in tropical and urbanizing regions. Given the complex interaction of natural and anthropogenic drivers 

of flooding—such as topography, rainfall intensity, land use changes, soil type, and drainage density—AHP has 

proven to be a valuable method for prioritizing multiple flood-influencing parameters in a transparent and 

reproducible manner. 

2.1.1 Criteria Commonly Used 

Most AHP-based flood hazard assessments employ a mix of hydrological, geomorphological, and anthropogenic 

criteria. Common indicators include: 

• Rainfall intensity or average annual precipitation 

• Slope and elevation (from DEM) 

• Land use/land cover (LULC) 

• Soil type or texture 

• Drainage density and distance to rivers 

• Impervious surface area 

• NDVI or vegetation cover 

• Proximity to river 

These criteria are typically derived from satellite data (e.g., Landsat, Sentinel-2, TRMM, SRTM), national maps, 

or meteorological datasets. The weights assigned to each criterion are based on expert judgment, literature 

precedents, or local knowledge via pairwise comparisons. 

2.1.2 Methodological Approaches 

Several studies validate the flood hazard maps produced using AHP with ground truth data, historical flood event 

records, or statistical methods like ROC-AUC. For instance, Rahmati et al. (2016) combined AHP with frequency 

ratio models to map flood susceptibility in Golestan Province, Iran, and achieved over 80% prediction accuracy. 
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Similarly, Choudhury et al. (2021) used AHP-GIS in the Indian Sundarbans and emphasized the weight of LULC 

and slope in flood-prone zones. 

Other studies, like Kourgialas and Karatzas (2017), proposed flood hazard indices at a national scale using multi-

criteria evaluation, highlighting the added value of AHP in data-scarce areas. In Bangladesh, Ahmed et al. (2020) 

employed AHP to determine the most flood-vulnerable districts, finding that impervious surfaces and drainage 

density were critical variables. 

2.1.3 Application in Tropical and Urban Contexts 

In tropical cities—characterized by high rainfall variability, informal settlements, and poor drainage—AHP has 

facilitated the integration of socio-environmental factors into flood modeling. For example, Fernandez and Lutz 

(2010) included urban sprawl and population density in their flood risk zoning in Argentina. In sub-Saharan Africa, 

Chingombe et al. (2021) applied AHP-GIS to Harare, integrating RS-based LULC data with social vulnerability 

indices. 

Although such studies often rely on expert judgment for weighting, several have attempted to reduce subjectivity 
by integrating stakeholder engagement or hybridizing AHP with fuzzy logic, ANP (Analytic Network Process), or 

machine learning models. These efforts improve the robustness and local applicability of the hazard maps. 

2.1.4 Synthesis of Findings 

AHP-GIS-RS-based flood assessments consistently find that: 

• LULC and slope are among the highest weighted criteria; 

• Imperviousness and drainage dominate in urban zones; 

• Validation with historical data significantly strengthens credibility; 

• The method is especially adaptable in data-scarce, hazard-prone tropical environments. 

These insights provide a strong methodological foundation for applying AHP to flood hazard assessment in 
Kinshasa, where topographic variability, unplanned settlements, and erratic rainfall pose serious flood risks. 

2.2 Landslide Hazard Assessment 

Landslides represent a major geohazard in tropical and mountainous regions, particularly in areas experiencing 

intense rainfall, deforestation, or rapid and unregulated urban expansion. The use of the Analytic Hierarchy Process 

(AHP) combined with Geographic Information Systems (GIS) and remote sensing (RS) has become a widespread 

approach to evaluate landslide susceptibility, thanks to its ability to integrate diverse spatial criteria and expert 
judgment within a reproducible, semi-quantitative framework. 

2.2.1 Commonly Used Criteria in AHP-Based Landslide Studies 

A review of recent studies reveals that landslide susceptibility mapping using AHP-GIS-RS typically involves the 

following main criteria: 

• Slope angle (usually derived from high-resolution DEMs) 

• Geological lithology or rock type 

• Land use/land cover (LULC) 

• Rainfall intensity or cumulative precipitation 

• Soil type and depth 

• Distance to roads or rivers 

• Normalized Difference Vegetation Index (NDVI) 

• Lineament density or fault proximity 

• Curvature and aspect 

These criteria are chosen based on literature precedents, expert interviews, or previous landslide occurrence data, 

and are then assigned weights through pairwise comparison matrices. Several studies have integrated historical 

landslide inventories to validate the AHP outputs. 

2.2.2 Notable Studies and Applications 

Komac (2006) pioneered the integration of geological and anthropogenic factors using AHP for landslide hazard 

mapping in Slovenia. Since then, numerous studies have built on this work. Kayastha et al. (2013), for instance, 

applied AHP in the Himalayas, combining DEM-derived factors with lithological and LULC maps. They found 

slope, geology, and rainfall to be the dominant contributors. 

In tropical Africa, Kakembo et al. (2019) used AHP and Landsat-derived NDVI to evaluate landslide-prone areas 

in eastern Uganda, highlighting how vegetation loss and steep topography increased susceptibility. Similarly, 
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Mensah et al. (2020) in Ghana showed that urban encroachment on steep slopes was a critical driver of landslides, 

with NDVI, slope, and proximity to roads ranking as key variables. 

More advanced approaches are seen in Youssef et al. (2015), who integrated AHP with fuzzy logic and historical 

landslide records in Egypt to improve model accuracy. Their work demonstrated that hybrid AHP-Fuzzy models 

significantly outperform basic AHP in uncertain environments. 

In Latin America, Castro et al. (2021) analyzed the use of AHP in Colombia’s Andean region, finding that 

integrating LULC dynamics from remote sensing enhanced susceptibility mapping, especially in peri-urban zones. 

Ghosh et al. (2020) applied AHP-GIS in Darjeeling (India) using Sentinel-2 and ASTER DEM data, achieving 
over 85% validation accuracy with ROC analysis. 

2.2.3 Insights from Urban and Tropical Settings 

In urban environments, AHP models tend to include anthropogenic factors such as road network density, 

construction activity, and population pressure. Abdulkadir and Pradhan (2020), working in Malaysia, found that 

unregulated development on steep slopes significantly altered the weight of influencing criteria compared to rural 
settings. 

In the DRC context, Giresse and Banza (2018) reported landslide-prone zones around Kinshasa due to 

deforestation and informal housing on unstable hills. Though AHP was not explicitly used in their study, it provides 

a strong basis for its future application. 

Furthermore, Basha et al. (2022) emphasized that rainfall intensity, derived from CHIRPS data, and slope from 

SRTM data, were among the top predictors in Ethiopian highlands, reinforcing AHP’s utility in East African 

geomorphology. 

2.2.4 General Observations and Trends 

Across the reviewed studies: 

• Slope, rainfall, geology, and LULC consistently appear as top-ranked factors; 

• Validation with landslide inventory or ROC-AUC is common and improves reliability; 

• Remote sensing data (Landsat, Sentinel, SRTM, ASTER) are essential for deriving spatial variables; 

• Hybrid AHP models (e.g., AHP-Fuzzy, AHP-ANN) are increasingly used to address uncertainties. 

 

In data-limited regions like Kinshasa, AHP-GIS-RS models provide a feasible alternative to purely statistical or 

physics-based models, offering actionable insights for slope stabilization and urban planning. 

2.3 Soil Erosion Hazard Assessment 

Soil erosion is a critical environmental issue in tropical regions, particularly in areas experiencing rapid land use 

changes, intense rainfall events, and inadequate soil conservation practices. In recent decades, the integration of 

the Analytic Hierarchy Process (AHP) with GIS and Remote Sensing (RS) has proven highly effective in assessing 

and mapping soil erosion susceptibility. This methodological combination allows for a multi-criteria evaluation 

that incorporates both natural and anthropogenic factors. 

2.3.1 Key Criteria Used in AHP-Based Soil Erosion Studies 

Across the reviewed literature, several criteria recur consistently in AHP models for soil erosion mapping: 

• Slope gradient (derived from DEMs) 

• Land use/land cover (LULC) 

• Soil type and texture 

• Rainfall erosivity (often using R-factor or annual precipitation) 

• Vegetation cover (NDVI or land cover class) 

• Drainage density or proximity to streams 

• Length-slope factor (LS) in adapted RUSLE models 

• Human activities (e.g., cultivation, deforestation, road construction) 

Weights are generally assigned based on expert knowledge, literature, or local observations, and verified using 

erosion inventories or sediment yield data where available. 

2.3.2 Notable Studies and Regional Applications 

In India, Shinde et al. (2019) applied AHP-GIS for erosion susceptibility mapping in the Western Ghats, showing 

that slope, rainfall, and LULC were the most significant factors. In East Africa, Moges and Bhat (2017) combined 
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AHP with RS-based NDVI and rainfall data in the Ethiopian Highlands, confirming the spatial agreement between 

predicted erosion hotspots and observed gullies. 

In West Africa, Mensah et al. (2021) conducted an AHP-based erosion risk study in northern Ghana, using Landsat 

and SRTM data. They found that deforestation and shifting cultivation were the main drivers of erosion, and 

suggested LULC as the highest weighted factor. 

In North Africa, El Jazouli et al. (2019) used AHP-GIS-RS in the Oum Er Rbia basin (Morocco) and emphasized 

the importance of combining RS-derived vegetation indices with topographic and climatic factors. Their validation 

with sedimentation records in reservoirs improved the reliability of the AHP model. 
In Latin America, Lozano-Baez et al. (2021) used Sentinel-2 and rainfall data with AHP to assess erosion risk in 

Colombia, incorporating NDVI and road density as key anthropogenic criteria. 

Hybrid approaches are also becoming more common. For instance, Roy et al. (2020) integrated AHP with fuzzy 

logic in Nepal to account for uncertainties in factor weighting, improving model performance in steep terrains. 

2.3.3 Insights from Tropical and Urbanizing Environments 

Studies in tropical urbanizing contexts such as Kinshasa remain limited, but relevant evidence exists. Munyololo 

et al. (2022) assessed erosion in peri-urban Kinshasa using GIS and a modified RUSLE approach, suggesting that 

an AHP framework could have added robustness, particularly in weighting subjective criteria such as land use 

pressure and informal road development. 

In similar contexts like Douala (Cameroon), Ndjigui et al. (2020) used AHP to show that unpaved roads and 

housing development in steep areas significantly increase erosion susceptibility, a finding likely transposable to 

Kinshasa’s topography and land pressure patterns. 

2.3.4 Common Findings and Methodological Trends 

Key trends observed in the literature include: 

• Slope and LULC are almost universally the top-ranked criteria; 

• Integration of NDVI and rainfall data from satellite imagery enhances prediction capacity; 

• Validation using erosion plots, field observations, or sediment yield data improves model accuracy; 

• Hybrid AHP approaches (e.g., with fuzzy logic or machine learning) offer improved reliability in complex 

tropical terrains. 

The AHP-GIS-RS framework is particularly suitable in data-scarce environments, allowing for a structured, 

transparent method to inform soil conservation planning and watershed management. 

2.4 Urban Heat Island and Air Quality Assessment 

Urban Heat Islands (UHIs) and air pollution are intensifying challenges in tropical and rapidly urbanizing regions, 

particularly in cities like Kinshasa. The combined use of Analytic Hierarchy Process (AHP), GIS, and remote 

sensing has allowed researchers to better understand, map, and manage these environmental risks by integrating 

multiple biophysical and anthropogenic criteria. 

2.4.1 AHP-GIS-RS Applications in Urban Heat Island Studies 

Studies evaluating UHI typically use land surface temperature (LST) derived from thermal satellite imagery (e.g., 

Landsat 8 TIRS, MODIS), combined with spatial indicators such as: 

• Land use/land cover (LULC) 

• Normalized Difference Vegetation Index (NDVI) 

• Built-up index (NDBI, impervious surface) 

• Population density or urban expansion 

• Surface albedo 

• Elevation and slope 

For example, Mallick et al. (2015) used AHP and Landsat imagery to model UHI in Delhi, assigning the highest 

weights to built-up surfaces and NDVI. Sahana et al. (2016) extended this approach to Kolkata, showing a strong 

inverse relationship between vegetation and LST. AHP facilitated weighting of conflicting parameters based on 

literature and expert judgment. 

In a tropical context, Debnath and Das (2021) applied AHP-GIS to analyze UHI in Dhaka, Bangladesh, 
incorporating LULC, NDVI, and albedo. They identified core high-temperature zones in densely urbanized, poorly 

vegetated neighborhoods. Ngo et al. (2022) demonstrated a similar approach in Ho Chi Minh City, suggesting 

zoning regulations and greening strategies for thermal mitigation. 
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Although no study has explicitly applied AHP to UHI analysis in Kinshasa, Kabeya et al. (2020) used Landsat 

data to characterize LST variations across communes and linked the findings to urban form. Their results highlight 

the relevance of an AHP-based framework to support mitigation planning. 

2.4.2 Air Quality Hazard Mapping with AHP 

Air quality assessments using AHP-GIS-RS remain less frequent but are emerging, especially in urban regions of 

developing countries. Key criteria include: 

• Proximity to roads or traffic density 

• Industrial or commercial land use 

• Vegetation cover (NDVI) 

• Population density 

• Meteorological variables (wind, temperature) 

Amiri et al. (2018) developed an AHP-GIS model for Tehran, combining traffic, land use, and weather data to 

identify high-pollution zones. Ahmed and De Brito (2020) applied a similar approach in Cairo, Egypt, and 

demonstrated that vegetation and road proximity were the most critical indicators. 

 

In Sub-Saharan Africa, Chakwizira et al. (2021) proposed an AHP model for pollution hotspots in Harare, 

Zimbabwe, using GIS layers on road networks, industrial zones, and NDVI. Their results revealed a strong spatial 
correlation between informal settlements, transportation corridors, and air quality deterioration. 

In the Kinshasa context, Tshilombo et al. (2022) measured PM₂.₅ and PM₁₀ levels across several communes and 

found the highest concentrations in Gombe, Kasa-Vubu, and Limete. While AHP was not used, the spatial 

heterogeneity and identified drivers could be structured in future studies using multi-criteria AHP frameworks. 

2.4.3 Methodological Trends and Relevance 

Key observations from the reviewed literature include: 

• The combination of LST and NDVI from remote sensing is central to UHI mapping. 

• AHP enables prioritization of urban design, land cover, and climate factors in heat exposure modeling. 

• NDVI and traffic-related metrics are crucial in air pollution assessments. 

• Validations are usually performed via in situ measurements, mobile sensors, or temporal satellite 

comparisons. 

• The approach is particularly valuable in data-scarce or rapidly changing environments, like tropical 

megacities. 

AHP-GIS-RS thus offers a replicable framework for understanding complex urban environmental hazards and can 

support adaptation planning in Kinshasa, where informal urbanization, vegetation loss, and air pollution are 

increasing. 

2.5 Groundwater Recharge and Drought Sensitivity Assessment 

Groundwater recharge and drought vulnerability are critical components of natural hazard management, especially 

in tropical and urbanizing regions. The integration of Analytic Hierarchy Process (AHP), GIS, and remote sensing 

has enabled the spatial evaluation of areas sensitive to declining groundwater levels and prolonged water scarcity. 

These studies combine multi-criteria decision-making with environmental datasets to identify priority zones for 

groundwater management and drought mitigation. 

2.5.1 AHP-GIS-RS for Groundwater Recharge Potential Mapping 

Mapping groundwater recharge potential is one of the most frequent applications of AHP in hydrological studies. 

Common criteria used include: 

• Soil type and permeability 

• Slope and topography (from DEM) 

• Land use/land cover 

• Rainfall intensity 

• Drainage density 

• Lithology 

• Lineament density 
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Magesh et al. (2012) demonstrated the use of AHP-GIS in South India, integrating slope, geology, and LULC data 

to delineate recharge zones. Shaban et al. (2019) used AHP in Lebanon to assess recharge areas with high 

resolution, giving higher weights to rainfall and soil type. 

In African contexts, Tiwari et al. (2021) applied a similar method in Ethiopia, showing how lineament density and 

soil texture were the most influential factors in recharge potential. Dago et al. (2020) employed AHP in Côte 

d'Ivoire using satellite-based rainfall and land cover maps. 

Although AHP has not yet been explicitly applied to map recharge potential in Kinshasa, studies such as Ilunga et 

al. (2017) and Makiese et al. (2022) have revealed decreasing water tables and unregulated borehole proliferation 
in peri-urban areas, calling for a structured multi-criteria recharge assessment. 

2.5.2 Drought Sensitivity Mapping with AHP-GIS-RS 

Drought vulnerability assessments using AHP rely on both climatic and non-climatic variables, such as: 

• Precipitation (long-term averages or trends) 

• Evapotranspiration 

• Vegetation health (NDVI, VCI) 

• Soil moisture and water holding capacity 

• Land use 

• Water demand (population, agriculture) 

Bhatti et al. (2016) developed a drought sensitivity model using AHP in Pakistan, combining rainfall, NDVI, and 

soil moisture. Nigussie et al. (2020) mapped drought-prone areas in Ethiopia using AHP-GIS, with high 

vulnerability in low-NDVI and high-slope regions. 

Remote sensing indices like NDVI, NDWI (Normalized Difference Water Index), and SPI (Standardized 

Precipitation Index) are commonly used. Panigrahi and Sahoo (2020) integrated AHP with NDWI and SPI from 

MODIS to assess drought patterns in eastern India. 

In Central Africa, Mubenga et al. (2021) discussed drought risk in the DRC using CHIRPS rainfall data, although 

AHP was not used. However, their findings reinforce the need for multi-criteria spatial frameworks in Kinshasa, 

where population pressure and erratic rainfall amplify drought exposure. 

2.5.3 Synthesis and Methodological Insights 

Across all these studies, several methodological trends emerge: 

• AHP is useful in weighing multiple, sometimes conflicting, hydrological and environmental variables. 

• Remote sensing provides timely inputs for NDVI, rainfall estimates, and topographic data (e.g., SRTM 

or ASTER DEM). 

• Ground validation remains rare but necessary; most validations are indirect or through comparison with 

known recharge zones or historical droughts. 

• Urban areas require additional criteria such as impervious surface mapping, which affects recharge 

capacity. 

As Kinshasa expands into previously forested and pervious areas, and as rainfall becomes increasingly variable, 

combining AHP, GIS, and satellite data offers a pathway for evidence-based planning of recharge zones and early 
warning systems for drought. 

3 Multihazard and Multiscale Approaches Using AHP 

3.1 Studies Combining Multiple Hazard Types 

The increasing frequency and intensity of natural hazards in both rural and urban contexts has led to the rise of 

multihazard assessments using the Analytic Hierarchy Process (AHP). A growing number of studies recognize 
that hazards such as floods, landslides, soil erosion, and heatwaves are interconnected, and assessing them in 

isolation may overlook critical spatial and temporal interactions. 

For example, Rehman et al. (2019) combined flood and landslide risk mapping in the Hindukush region using 

AHP, integrating geophysical, hydrological, and land use criteria. Similarly, De Brito et al. (2018) proposed a 

multihazard approach in Portugal, where AHP helped prioritize zones exposed to both wildfire and erosion risks. 

In Sub-Saharan Africa, Nigussie et al. (2021) evaluated flood and erosion risk concurrently in Ethiopia, using 

satellite imagery and GIS layers weighted via AHP. In the DRC, although few fully integrated multihazard AHP 

studies exist, Ilunga et al. (2020) combined qualitative expert judgment with DEM and land cover data to assess 

the joint impact of landslides and floods in eastern Congo, indicating the viability of the method in the Central 

African context. 
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Multihazard approaches often involve overlapping datasets (e.g., slope, soil, rainfall, LULC), but AHP allows for 

differentiated weighting based on hazard-specific vulnerabilities. 

3.2 Advantages and Challenges of AHP in Multihazard Contexts 

AHP is particularly well-suited to multihazard analysis because it enables structured comparison of criteria across 

different risk domains. Its main advantages include: 

• Ability to integrate heterogeneous data (e.g., DEM, NDVI, geology, land cover) with expert knowledge. 

• Flexibility to assign relative weights to criteria based on hazard type and local context. 

• Enhanced transparency and replicability in priority setting for disaster risk management. 

However, several challenges persist: 

• Weight conflict: Some criteria (e.g., slope) may be positively correlated with one hazard (landslides) and 

inversely with another (floods), complicating the assignment of consistent weights (Kubal et al., 2009). 

• Data harmonization: Multihazard studies often require datasets with different spatial resolutions and 

temporal frequencies, which may reduce reliability. 

• Expert bias and subjectivity: In complex multihazard contexts, inconsistencies in expert judgment can 

propagate through the AHP matrix (Saarloos et al., 2016). 

• Lack of validation: Very few studies calibrate or validate multihazard AHP outputs with field data or 

historical events. 

3.3 Scales of Analysis and AHP Adaptability 

The adaptability of AHP across different spatial scales is one of its strengths. However, scale influences both the 

selection of criteria and the weighting process. 

• Local scale: At the neighborhood or catchment level, studies typically focus on high-resolution data such 

as household exposure, land cover at 10–30 m resolution (e.g., Sentinel, Landsat), and microtopography. 

AHP is often used in participatory mapping or community risk assessments (Khazai et al., 2018). 

• Urban/regional scale: Larger scale studies include administrative zones or entire metropolitan areas. 

These often rely on broader datasets such as regional geology, rainfall averages, or census data. In this 

context, AHP is used for strategic planning, e.g., infrastructure siting or city-scale vulnerability zoning 
(Hussain et al., 2020). 

• National scale: AHP becomes more challenging due to heterogeneity in hazard profiles and socio-

economic indicators. Still, it has been successfully used in national risk atlases (e.g., in Nepal or 

Bangladesh) with aggregated criteria and policy-oriented goals (Malczewski & Rinner, 2015). 

In Kinshasa, where data availability varies by commune and where hazard patterns differ from east to west, AHP 

offers an opportunity to implement a nested multiscale approach—local for slope instability zones, and city-wide 

for flood or heat hazard assessment. 

4 Comparative Analysis of Criteria and Weighting Trends 

4.1 Most Frequently Used Criteria by Hazard Type 

Across the reviewed studies, the Analytic Hierarchy Process (AHP) was used to prioritize a wide variety of criteria 

depending on the hazard type. The most recurrent factors for each type of hazard are summarized below: 

• Floods: Elevation, slope, land use/land cover (LULC), rainfall intensity, distance to rivers, soil 

permeability, and drainage density were consistently among the most used criteria (Rahmati et al., 2016; 

Papaioannou et al., 2015). NDVI and impervious surfaces were also frequently included in urban studies. 

• Landslides: Slope gradient, aspect, lithology, land cover, distance to roads, rainfall, and soil type were 

dominant criteria (Kayastha et al., 2013; Kanungo et al., 2009). DEM-derived terrain roughness and 

curvature were also common. 

• Soil erosion: Slope length and steepness (LS factor), rainfall erosivity (R factor), soil erodibility (K), 

vegetation cover (C factor), and land management practices (P factor) featured prominently, often using 

RUSLE inputs as AHP criteria (Phinzi & Ngetar, 2021). 

• Urban heat islands (UHI): Surface temperature, NDVI, NDBI (Normalized Difference Built-up Index), 

albedo, and LULC were commonly used (Weng & Lu, 2008; Ahmed et al., 2021). 

• Groundwater recharge: Soil texture, slope, geology, rainfall, LULC, and drainage density were typical 

criteria (Magesh et al., 2012; Machiwal et al., 2014). 

• Air quality: Very few studies used AHP for air quality risk mapping, but where it was done, they used 

proximity to roads/industries, population density, meteorological conditions, and LULC as indicators 

(Kumar et al., 2021). 
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In the tropical African context, flood and landslide studies dominate. In Kinshasa, recent studies have also 

integrated slope, land occupation, rainfall, and soil structure to evaluate risks (Ilunga et al., 2020; Kachabe et al., 

2022). 

Beyond the qualitative analysis presented for each hazard type, it is useful to quantify the relative importance of 

the most frequently used criteria across the reviewed studies. Table 1 synthesizes the frequency of occurrence of 

the main AHP factors (slope, land use/land cover, rainfall, soil, geology, proximity factors, etc.) for each hazard. 

 

Table 1 : frequency of occurrence of the main AHP factors  for each hazard 

Criterion Flooding  Landslides  Erosion  UHI/Air 

Quality  

Recharge/Water 

Deficit  

Multi-

hazard  

Overall 

Frequency  

Slope 67% 93% 90% 17% 57% 83% 75% 

Land Use / 

Land Cover 

83% 67% 80% 83% 71% 83% 78% 

Rainfall 61% 53% 70% 0% 86% 67% 58% 

Soil type / 

texture 

56% 40% 70% 0% 57% 33% 46% 

Geology / 

lithology 

33% 60% 50% 0% 29% 50% 38% 

Proximity to 

rivers/roads 

50% 47% 60% 17% 29% 50% 44% 

Vegetation 

indices NDVI, 

etc. 

22% 20% 50% 67% 43% 33% 34% 

Temperature 

/ LST 

0% 0% 0% 100% 0% 0% 10% 

 

This cross-cutting summary highlights the dominant role of slope and land cover in most hazards, while rainfall 

and soil are particularly important for flooding and erosion. 

 

4.2 Weighting Methods Used in AHP-Based Studies 

While the standard AHP pairwise comparison matrix remains dominant in hazard susceptibility studies, several 

variations in weighting strategies have emerged to address its limitations: 

• Classical AHP: The majority of studies apply Saaty’s 1–9 scale for pairwise comparisons, followed by 

consistency ratio CR testing to ensure reliability Saaty, 1980. This approach remains the most widely 

adopted across different hazard types and geographic contexts. 

• Hybrid methods: To improve robustness, some researchers combine AHP with complementary 
techniques. Examples include AHP integrated with Fuzzy Logic to reduce subjectivity Yalcin & 

Akyurek, 2004, or combined with TOPSIS and Delphi methods to foster consensus building among 

experts Malczewski, 2006; Mahapatra et al., 2021. 

• GIS-based automation: An increasing number of studies employ GIS environments to automate 

normalization and weighting once AHP-derived weights are finalized. This approach is particularly 

valuable for large-scale or multihazard assessments, where efficiency and reproducibility are critical 

Rahman et al., 2022. 
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Table 2. Master Summary Table per Hazard 

Hazard Key Criteria Typical 

Weights/Importance 

Common Datasets Validation 

Approaches 

Floods Slope, Rainfall, 

Drainage Density, 

LULC, Soil type, 

Distance to rivers 

Slope & Rainfall 

usually dominant 

SRTM/ASTER DEM, 

Landsat/Sentinel, 

Rainfall 

CHIRPS/TRMM, Soil 

maps 

Flood inventory 

maps, 

ROC/AUC, Field 

validation 

Landslides Slope angle, 
Lithology, LULC, 

Rainfall, Drainage 

density, Lineaments, 

Proximity to 

faults/roads 

Slope angle & 
Lithology highly 

weighted 

SRTM DEM, 
Geological maps, 

Landsat/Sentinel, 

Rainfall data, 

Fault/road maps 

Landslide 
inventory, 

ROC/AUC, Field 

surveys 

Soil Erosion Slope, Rainfall 

erosivity, Soil 

erodibility, LULC, 

Drainage density, 

Vegetation index 

Rainfall erosivity & 

Slope dominate 

SRTM DEM, 

Landsat/Sentinel 

NDVI, Soil maps, 

Rainfall data 

Erosion gully 

mapping, 

Sediment yield 

data, Field 

checks 

Urban Heat 

Island / Air 

Quality 

LULC, Impervious 

surfaces, NDVI, 

Albedo, Population 

density, Built-up 
density 

Built-up density & 

NDVI higher weights 

Landsat/Sentinel, 

MODIS LST, 

Nighttime lights, 

Population datasets 

Temperature/air 

quality stations, 

Remote sensing 

indices 

Groundwater 

Recharge 

Rainfall, Soil 

permeability, Slope, 

LULC, Lithology, 

Drainage density 

Rainfall & Soil 

permeability key 

SRTM DEM, 

Soil/lithology maps, 

Rainfall data, LULC 

maps 

Groundwater 

wells, Recharge 

data, Field 

validation 

Drought 

Sensitivity 

Rainfall variability, 

NDVI, Soil type, 

Temperature, LULC, 

Evapotranspiration 

Rainfall variability & 

Soil type emphasized 

CHIRPS rainfall, 

MODIS NDVI, Soil 

maps, Temperature 

datasets 

Historical 

drought impacts, 

Time series 

validation 

Multihazard Combination of 

above criteria, 

hazard-specific 

indices, 

socioeconomic 
vulnerability 

indicators 

Varies; hazards 

normalized & 

combined 

Integration of hazard 

datasets, 

Census/vulnerability 

data 

Cross-validation 

with multihazard 

inventories 

 

The reviewed literature demonstrates diverse applications of AHP-GIS-RS across hazards, yet consistent patterns 

can be observed in the selection of criteria, their relative weighting, and the datasets utilized. Validation 

approaches also reveal a degree of convergence, with historical inventories and ROC/AUC analysis emerging as 

the most frequently used techniques. To consolidate these insights, Table 2 synthesizes cross-hazard information 

by summarizing the main criteria, their typical importance, the most common datasets, and the validation 

strategies reported in the reviewed studies. 

4.3 Subjectivity vs. Empirical Validation 

The AHP method is often criticized for its subjectivity, as the weighting process relies on expert opinion. This 

raises key issues: 

• Expert variability: Weights derived from stakeholders e.g., engineers, planners, community leaders often 

vary significantly, which can alter final hazard zoning results Saarloos et al., 2016. 

• Lack of validation: Many studies fail to validate AHP-derived hazard maps with historical data, field 

surveys, or observed events, making it difficult to assess their reliability Chen et al., 2013. 

• Emerging trends in validation: 

• Use of ROC curves and success rate curves for landslide and flood susceptibility models 
Kayastha et al., 2013. 

• Comparison with known flood extents or sentinel-based flood maps in urban contexts. 



 

Revue Internationale de la Recherche Scientifique (Revue-IRS) - ISSN :  2958-8413 

   
 

   

http://www.revue-irs.com 4452 

 

• Ground truthing using field data or post-event damage assessments Machiwal et al., 2014. 

 

An additional dimension of comparison concerns the validation of AHP-based hazard susceptibility maps. Table 

3 summarizes the validation approaches reported across the reviewed studies, together with the typical ranges of 

performance metrics 

 

Table 3. Validation approaches and performance metrics reported 

Validation Method Share % Typical Performance Reported 

ROC / AUC 50% AUC = 0.75 – 0.90 median ~0.82 

Success Rate Curve SRC 16% SRC accuracy = 70 – 85% 

Confusion Matrix kappa, accuracy 11% Overall accuracy = 65 – 80% 

Field validation / inventory data 8% Generally confirms susceptibility patterns 

No explicit validation reported 15% – 

 

Table 3 reveals that while ROC/AUC is by far the most common metric, few studies go beyond statistical 

validation to incorporate field data or independent inventories 

 

In Kinshasa, studies remain limited in terms of empirical validation, though there is growing awareness of its 
necessity. Tools such as crowd-sourced flood reports or high-resolution satellite data e.g., Sentinel-1 could bridge 

this gap in future research. 

5 Relevance for the Kinshasa Context 

The Analytic Hierarchy Process AHP, when combined with Geographic Information Systems GIS and remote 

sensing, has proven effective in assessing natural hazards in rapidly urbanizing African cities—contexts that share 

many characteristics with Kinshasa. A review of relevant studies reveals several insights applicable to Kinshasa’s 

unique urban dynamics, data limitations, and multi-hazard environment. 

5.1 AHP in Fast-Growing African Cities 

Several African cities experiencing rapid urbanization have successfully used AHP-GIS-RS methodologies for 

hazard mapping. For instance, Chingombe et al. 2021 applied AHP in Harare to identify flood-risk zones, 

combining population density, LULC, and drainage factors. In Addis Ababa, Nigussie et al. 2020 mapped flood 

and erosion susceptibility using high-resolution satellite data and AHP, revealing strong correlations with areas of 

unplanned expansion. Studies in Lagos Adesina & Farombi, 2019 and Abidjan Kouadio et al., 2022 also adapted 

AHP to model landslides and flooding in peri-urban, informal settlements. These experiences demonstrate that 

AHP is well-suited to cities facing similar challenges to Kinshasa: rapid growth, informal housing, and varied 

hazard profiles. 

5.2 Justification for AHP-GIS-RS in Kinshasa 

Building on the general synthesis, it is crucial to contextualize the reviewed methods for data-scarce and rapidly 

urbanizing environments such as Kinshasa. The city is affected by multiple hazards that demand analysis at 

different spatial scales and depend on diverse spatial and environmental datasets. Table 4 presents a practical 

applicability matrix that links each hazard to the appropriate analysis scale and the key data requirements, thereby 

providing a roadmap for implementing the AHP-GIS-RS framework in the local context. 
 

Table 4. Kinshasa Applicability Matrix 

Hazard Spatial Scale Needed Key Data Needs 

Floods Sub-commune / catchment 

scale 

High-resolution DEM, drainage maps, rainfall 

intensity data 

Landslides Slope units / neighborhood 

scale 

Geological maps, slope stability data, DEM, 

rainfall 

Soil Erosion Catchment / hill-slope scale Rainfall erosivity, NDVI, soil type, DEM 



 

Revue Internationale de la Recherche Scientifique (Revue-IRS) - ISSN :  2958-8413 

   
 

   

http://www.revue-irs.com 4453 

 

Urban Heat Island Urban block / LST grids LST, NDVI, built-up density, population data 

Groundwater 

Recharge 

Aquifer recharge zones / basin 

scale 

Rainfall, soil permeability, hydrogeology 

Drought Regional / time-series scale Rainfall time series, NDVI, evapotranspiration 

data 

Multihazard Citywide integration of hazard 

layers 

Integrated hazard maps, census data, infrastructure 

exposure 

 

Kinshasa faces overlapping natural hazards—including floods, landslides, soil erosion, urban heat islands, and 

groundwater stress—all exacerbated by rapid land-use change and climate variability. Applying AHP-GIS-RS in 

this context offers several advantages: 

• Data flexibility: AHP can integrate both quantitative remote-sensing indicators e.g., slope from DEM, 
NDVI, LST and qualitative expert knowledge, making it particularly suited to environments with 

limited ground data. 

• Spatial explicitness: Through GIS integration, the approach enables fine-scale hazard mapping at 

commune, neighborhood, or sub-watershed levels, supporting more targeted and effective mitigation 

planning. 

• Transparency and participatory potential: Pairwise comparisons can involve local stakeholders—

including planners, engineers, and community representatives—thereby enhancing credibility and local 

ownership of results. 

• Modularity and adaptability: The framework is flexible, allowing multi-hazard integration and 

scenario-based analysis, and can be updated as new datasets and modeling techniques become available. 

5.3 Kinshasa’s Specific Characteristics 

Kinshasa demonstrates several contextual features reinforcing the relevance of AHP-GIS-RS: 

• Unplanned Urbanization: The city has experienced rampant informal expansion into flood-prone and 

deforested hillsides, especially in communes such as Mont-Ngafula, Selembao, and Kisenso. 

• Data Limitations: Official hazard inventories and hydrometeorological data remain fragmented, 

necessitating reliance on satellite data and expert knowledge. 

• Diverse Hazard Profile: Kinshasa is simultaneously exposed to flooding, slope instability, soil erosion, 

urban heat stress, and decreasing groundwater recharges. 

• Rapid Environmental Change: Ongoing land cover transitions and climate variability demand a flexible, 

repeatable approach for scenario-based projections. 

Given these conditions, prioritizing AHP-GIS-RS for hazard mapping supports a robust framework for the thesis. 

The method can handle the multi-hazard context, accommodate missing data, engage local experts, and generate 

spatial outputs to inform urban planning and resilience-building strategies. 

6 Conclusion 

The Analytic Hierarchy Process AHP, especially when integrated with GIS and remote sensing, has proven to be 

a robust and adaptable method for assessing natural hazards across diverse contexts. Its strengths lie in its 

structured yet flexible approach to multi-criteria decision-making, allowing both quantitative spatial data and 

expert judgment to be incorporated into hazard analysis. AHP has been widely used for individual hazards such as 

floods, landslides, erosion, urban heat islands, and groundwater vulnerability, as well as for multihazard and 

multiscale assessments. It enables clear prioritization of contributing factors, fosters stakeholder participation, and 

supports spatially explicit risk mapping even in data-limited settings. 

 

The reviewed literature demonstrates that AHP is particularly well-suited to rapidly urbanizing tropical cities 

facing complex environmental challenges and data scarcity—conditions that closely mirror those of Kinshasa. 

However, most prior studies focus on single-hazard contexts or are limited to localized applications. This thesis 
seeks to contribute to the field by applying AHP-GIS-RS in a comprehensive, multi-risk evaluation tailored to 

Kinshasa’s unique conditions: informal urban expansion, fragile soils, frequent extreme rainfall events, and limited 

ground data availability. By building on existing methodological strengths and addressing key gaps—especially 
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the integration of multiple hazards at the metropolitan scale—this study aims to deliver a replicable and decision-

supportive risk assessment model, suited for urban planning and climate resilience in Kinshasa and similar cities 

in the Global South. 
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